

Name: _____

Topic 1 Chemistry 2022 Exam

Date:

Time:

Total marks available:

Total marks achieved: _____

Mark Scheme

Q1.

Question Number	Indicative content	Mark
*	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the	(6)
	qualities and skills outlines in the generic mark scheme.	AO 1 1
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	
	 in all structures the carbon atoms bonded by single covalent 	
	 bonds shared pair of electrons 	
	 strong bonds 	
	 in diamond each carbon atom joined to four others 	
	 diamond has a giant covalent {structure/lattice} graphene has a giant covalent {structure/lattice} 	
	 fullerene has a molecular structure in graphene and fullerene each carbon atom joined to three others 	
	 in graphene and fullerene each carbon atom joined to three others in diamond and graphene many bonds need to be broken to 	
	melt	
	 need lots of energy therefore very high melting / sublimation points 	
	in fullerene weak forces between molecules	
	 less energy needed to separate molecules fullerene has the lowest melting / sublimation point 	
	 because diamond and graphene have lots of strong covalent 	
	 bonds so both are very strong materials because weak forces between fullerene molecules so its 	
	strength is very low	
	 in diamond there are no free electrons 	
	 so diamond does not conduct 	
	 in graphene and fullerene each carbon atom has one free electron 	
	hence delocalised electrons	
	graphene conducts electricity	
	 fullerene only conducts electricity across the surface of the molecule 	
	 no/little movement of electrons between molecules 	
	 so fullerene is poor conductor of electricity (/ semi conductor) 	

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas, enquiry, techniques and procedures lacks detail. (AO1) Presents an explanation with some structure and coherence. (AO1)
Level 2	3-4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and fully devolved. (AO1) Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully devolved. (AO1) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

Q2.

Question Number	Answer	Additional guidance	Mark
An explanation linking two of the following points			(2) AO 1 1
	 {metal ions / cations} surrounded by (delocalised) electrons (1) 	ignore metal nuclei	
	 strong {forces of attraction / bonding} (between (delocalised) electrons and {metal ions / cations}) (1) 	allow electrostatic bonds / metallic bonds	
	 needs lots of energy to {separate the particles / break bonds / break forces of attraction} (1) 	ignore separating electrons any mention of intermolecular forces / covalent bonding / molecules / ionic bonding / atoms – max 1 mark	
		marking points independent	

Answer	Mark
B -78 -33 does not conduct	(1)
The only correct answer is B	AO 2 1
A is not correct because simple molecular, covalent substances do not have high mpt and bpt	
<i>C</i> is not correct because ammonia is a gas at room temperature and does not conduct	
D is not correct because simple molecular, covalent substances do not have these properties	
	 B -78 -33 does not conduct The only correct answer is B A is not correct because simple molecular, covalent substances do not have high mpt and bpt C is not correct because ammonia is a gas at room temperature and does not conduct D is not correct because simple molecular, covalent substances do not

Question Number	Answer	Additional guidance	Mark
(ii)	$N_2 + 3H_2 \rightarrow 2NH_3 (2)$	accept multiples allow = or \rightleftharpoons in place of \rightarrow	(2)
	left hand side formulae (1) balancing of correct formulae (1)	ignore state symbols even if incorrect do not allow N2, n2, etc	AO 2 1

Q4.

Question Number	Answer	Additional guidance	
Number	iron $10.00 = 0.179 / 0.18 / 0.2 and 56copper 11.34 = 0.179 / 0.18 / 0.2 (1) 63.5(ratio 1:1) so reaction A (1)$	allow max 1 mark for Fe : $56 = 5.6$ 10.00 Cu : $63.5 = 5.6$ 11.34 so reaction A other methods of calculation include 10.00 g Fe forms 10.00 x 63.5 (1) g copper 56 = 11.34 g copper so reaction A (1) second mark dependent on first	(2) AO 3 2a AO 3 2b

Q5.

Question Number	Answer		Acceptable answers	Mark
	$CaCl_2 = 40 + 35.5 + 35.5$ (1)	(=111)	0.2 scores 3	(3)
	THEN moles = 11.1 / 111 (1)	(= 0.1)	ecf: 11.1 / Mr	
	$conc = moles \times 1000/500$ (1)	(=0.2)		
	OR mass conc = 11.1 x 1000/500 (1)	(=22.2)	ecf: mass conc / 111	
	conc = mass conc/111 (1)	(= 0.2)		

Q6.

Question number	Answer	Additional guidance	Mark
(i)	D oxidation Answers A and B are physical processes rather than chemical reactions.		(1)
2	C is wrong because it is not neutralisation.		

Question number	Answer	Additional guidance	Mark
(ii)	 A description linking any three from: lift lid from time to time/ leave small gap between crucible and lid (1) find mass (of crucible, lid and product) (1) {repeat / heat} to constant mass (1) 	allow `we <mark>i</mark> gh'	(3)
	 final mass – start mass = mass of oxygen (1) 	allow find the change in mass	

Q7.

Question	Indicative content	Mark	
number	Answers will be credited according to candidate's deployment of	(6)	
	knowledge and understanding of the material in relation to the qualities	(0)	
	and skills outlines in the generic mark scheme.		
	and skills oddines in the generic mark scheme.		
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.		
	AO3 (6 marks)		
	A is copper oxide		
	copper oxide is black		
	 copper oxide reacts with sulfuric acid to make {copper sulfate / 		
	blue solution} but no gas		
	B is magnesium		
	magnesium is silver coloured		
	 magnesium reacts/ bubbles with water 		
	 magnesium reacts with sulfuric acid to give hydrogen / equation 		
	C is sodium hydroxide		
	 sodium hydroxide is white 		
	 sodium hydroxide solution is colourless 		
	 sodium hydroxide reacts with sulfuric acid to form a colourless 		
	solution / equation		
	 sodium hydroxide solution is alkaline 		
	 sodium hydroxide has hydroxide ions 		
	D is copper carbonate		
	 copper carbonate is green 		
	 carbonates are insoluble 		
	 copper carbonate reacts with sulfuric acid to form copper 		
	sulfate and {gas / carbon dioxide}		
	 copper carbonate reacts with sulfuric acid to form carbon 		
	dioxide / equation		
	 copper sulfate (solution) is blue 		

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Deconstructs scientific information but understanding and connections are flawed. An unbalanced or incomplete argument that provides limited synthesis of understanding.
		 Judgements are supported by limited evidence. (AO3)
Level 2	3-4	 Deconstructs scientific information and provides some logical connections between scientific concepts. An imbalanced argument that synthesises mostly relevant understanding, but not entirely coherently.
		 Judgements are supported by evidence occasionally. (AO3)
Level 3	5-6	 Deconstructs scientific information and provide logical connections between scientific concepts throughout. A balanced, well-developed argument that synthesises relevant understanding coherently.
	5	 Judgements are supported by evidence throughout. (AO3)

Level	Mark	Descriptor	Additional Guidance
	0	No rewardable material.	Read whole answer and ignore all incorrect material/ discard any contradictory material then: No solids are correctly identified/ One solid is identified but no reason is given
Level 1	1–2	Additional Guidance Three solids are correctly identified but only one or none have valid reasoning (2)	Possible candidate response
		Two solids are correctly identified and one has valid reasoning (2)	A is copper oxide. D is copper carbonate because carbonates fizz with acid. – 2 correctly identified, one has a sufficient
		Two solids are correctly identified but neither has valid reasoning (1)	reason (2)
		One solid is correctly identified with a valid reason (1)	
Level 2	3-4	Additional Guidance All four solids are correctly identified but only one or none have valid reasoning -No solid has valid reasoning (3) -One solid has valid reasoning (4) Three solids are correctly identified and at least two have valid reasoning -Three have valid reasoning (4) -Two have valid reasoning (3) Two solids are correctly identified and both have valid reasoning (3)	Possible candidate response A is copper oxide because it has pH 7, B is magnesium because metals are silver coloured, C is sodium hydroxide because it reacts with acid, D is copper carbonate because it has pH 7. – 4 correctly identified, only 1 has a sufficient reason (magnesium is silver) (4)
Level 3	5–6	Additional Guidance All four solids are correctly identified and at least two have valid reasoning. -Two or three solids have valid reasoning (5) -All four have valid reasoning (6)	Possible candidate response A is copper oxide because it is the only black solid. B is magnesium because metals are silver coloured. C is sodium hydroxide because it dissolves to form an alkaline solution. D is copper carbonate because it forms copper sulfate which is blue in the reaction with acid <u>and fizzes</u> . 4 correctly identified, 4 with sufficient reasons (6)

Question Number	Answer	Mark
(i)	C iron oxide is reduced	(1)
	The only correct answer is C	AO 1 1
	A is not correct because carbon gains oxygen	
	B is not correct because it is not an acid-base reaction	
	D is not correct because iron oxide loses oxygen	

Answer	Additional guidance	Mark
final answer of 168 (tonnes) with or without working (3)	allow ECF throughout	(3)
OR	M _r [Fe ₂ O ₃]= 160 seen without working (1)	AO 2 1
relative formula mass $Fe_2O_3 =$ 2x56 + 3x16 (= 160) (1)	allow 320 tonnes : 224 tonnes (1)	
160 tonnes Fe ₂ O ₃ produces $\{2x56 / 112\}$ tonnes Fe (1)	final answer 84 (tonnes) with or without working (2)	
240 tonnes Fe_2O_3 produces 2x56 x 240 (1) = 168 (tonnes) 160	malout norming (2)	
OR relative formula mass Fe_2O_3 = 2x56 + 3x16 (= 160) (1)	Note : final answer 1.5 scores 2 overall	
$\frac{240}{160}(1) = 1.5$ 1.5 x 112 (1) = 168 (tonnes)		
OR relative formula mass Fe_2O_3 = 2x56 + 3x16 (= 160) (1)		
$\frac{112}{160}(1) = 0.7$		
	final answer of 168 (tonnes) with or without working (3) OR relative formula mass $Fe_2O_3 =$ 2x56 + 3x16 (= 160) (1) 160 tonnes Fe_2O_3 produces {2x56 / 112} tonnes Fe_1) 240 tonnes Fe_2O_3 produces 2x56 x 240 (1) = 168 (tonnes) 160 OR relative formula mass Fe_2O_3 = 2x56 + 3x16 (= 160) (1) 240 (1) = 1.5 160 1.5 x 112 (1) = 168 (tonnes) OR relative formula mass Fe_2O_3 = 2x56 + 3x16 (= 160) (1) 112 (1) = 0.7	final answer of 168 (tonnes) with or without working (3)allow ECF throughoutOR relative formula mass $Fe_2O_3 =$ $2x56 + 3x16 (= 160) (1)$ $M_r [Fe_2O_3] = 160$ seen without working (1)160 tonnes Fe_2O_3 produces {2x56 / 112} tonnes $Fe (1)$ allow 320 tonnes : 224 tonnes (1)160 tonnes Fe_2O_3 produces {2x56 / 112} tonnes $Fe (1)$ final answer 84 (tonnes) with or without working (2)240 tonnes Fe_2O_3 produces $2x56 \times 240 (1) = 168 (tonnes)$ Note : final answer 1.5 scores 2 overallOR relative formula mass Fe_2O_3 $= 2x56 + 3x16 (= 160) (1)$ Note : final answer 1.5 scores 2 overallOR relative formula mass Fe_2O_3 $= 2x56 + 3x16 (= 160) (1)$ Note : final answer 1.5 scores 2 overallOR relative formula mass Fe_2O_3 $= 2x56 + 3x16 (= 160) (1)$ Note : final answer 1.5 scores 2 overallOR relative formula mass Fe_2O_3 $= 2x56 + 3x16 (= 160) (1)$ Image: State of the state

Q9.

Question number	Indicative content	Mark
	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. A01 (3 marks) and A02 (3 marks)	(6)
	 STRUCTURE calcium chloride is an ionic compound with lattice of positive and negative ions calcium is a metal and so has a metallic structure of delocalised electrons and {calcium/Ca²⁺ ions} chlorine is a simple molecular covalent compound MELTING POINT there are strong electrostatic forces of attraction/ionic bonds between the ions in calcium chloride a large amount of heat energy is required to break the electrostatic forces (so calcium chloride has a high melting point) strong electrostatic forces between ions and delocalised electrons in calcium a large amount of heat energy is required to break the electrostatic forces (so calcium has a high melting point) chlorine has weak forces of attraction between its molecules and these weak forces only take a small amount of energy to break down (so chlorine has a low melting point) 	

 CONDUCTIVITY WHEN SOLID ions are fixed in a lattice and so cannot move (therefore calcium chloride cannot conduct a current) delocalised electrons in metallic structure can move to carry a current (so calcium can conduct a current) there are no delocalised electrons/ions/charged particles/overall charges in chlorine molecules and (so chlorine cannot conduct a current) 	
 CONDUCTIVITY WHEN MOLTEN however, when molten ions are free to move (and therefore molten calcium chloride can conduct a current) delocalised electrons in metallic structure can move to carry a current (so calcium can conduct a current) there are no delocalised electrons/ions/charged particles/overall charges in chlorine molecules and (so chlorine cannot conduct a current) 	
all incorrect information/explanations should be ignored reject contradictory explanations	

Level	Mark	Additional Guidance	General additional guidance Eg - At each level, as well as content, the scientific coherency of what is stated backed up by planning detail will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance Three structures named OR one structure described OR one property explained for one substance	 <u>Possible candidate responses</u> calcium is metallic, chlorine is a molecule (1) calcium chloride is ionic with positive calcium ions and negative chloride ions (2) calcium is metallic, chlorine is covalent, calcium chloride is ionic (2) calcium is metallic it conducts when solid as it has mobile electrons (2)
Level 2	3-4	Additional guidance Three structures described or three properties explained.	 <u>Possible candidate responses</u> calcium has a metallic lattice of cations and delocalised electrons. Chlorine is made of simple molecules with weak intermolecular forces between them (3) calcium has a metallic lattice of cations and delocalised electrons. Chlorine is made of simple molecules with weak intermolecular forces between them, this means that chlorine has a low melting point because little energy is needed to overcome these forces. (4)
Level 3	5-6	<u>Additional guidance</u> Six properties explained.	 Possible candidate responses calcium chloride has strong electrostatic forces between the ions so a high melting point and these ions are fixed in a lattice so the solid does not conduct. When melted, the ions are free to move and so the liquid does conduct. There are weak intermolecular forces between chlorine molecules so the melting point is low.(5) calcium chloride has strong electrostatic forces between the ions so a high melting point and these ions are fixed in a lattice so the solid does not conduct. When melted, the ions are free to move and so the liquid does conduct. There are weak intermolecular forces between chlorine molecules so the solid does not conduct. When melted, the ions are free to move and so the liquid does conduct. There are weak intermolecular forces between chlorine molecules so the melting point is low and molecules are uncharged so chlorine does not conduct electricity when solid or liquid (6)

Q10.

Question number	Answer	Additional guidance	Mark
(i)	 An explanation linking {rate/ mass loss} is slowing down (1) as amount of reactant falls (1) OR mass decreases (1) as further decomposition occurs/ reaction continues / {gas/CO₂} {is produced/ escapes/ lost} (1) 	allow amount of calcium carbonate decreases do not allow 'as time goes on' for 2 nd mark: must explain in terms of a reaction	(2)
(ii)	mass may decrease further / not heated to constant mass / last two mass figures not the same	allow mass is still decreasing ignore there is still 5.2g solid reject mass has not gone to zero	(1)

Q11.

Question number	Answer	Additional guidance	Mark
	 An explanation linking: (calcium) nitrate {is soluble/ dissolves}/ (calcium) carbonate {is insoluble/ does not dissolve} (1) so ions {free to 		(2)
	move in solution / not free in solid} (1)	calcium nitrate dissolves so ions can move (2) or reverse argument for calcium carbonate	

Q12.

Question number	Answer	Additional guidance	Mark
	An explanation that combines identification – knowledge (1 mark) and reasoning/justification – understanding (1 mark):		(2) EXP
	 {delocalised/free} electrons (1) 	ignore `spare electrons' allow sea of electrons	
	 (electrons) move (between the layers) (1) 	ignore `carry the charge' / `current to flow' reject between molecules	
		free flowing electrons (2) electrons free to move (1)	

Q13.

Question number	Answer	Additional guidance	Mark
(i)			(2) EXP
	 {2 pairs of/four} electrons shared between an oxygen atom and the carbon atom (1) 	ignore any inner electrons shown remaining electrons on oxygen either singly or paired allow all dots or all crosses	
	• rest of structure correct (1)	2 nd mark dependent on 1st	

Question number	Answer	Additional guidance	Mark
(ii)	An explanation that makes reference to identification – knowledge (1 mark) and reasoning /justification – knowledge (1 mark):		(2) GRAD
	 diamond has a giant (covalent) structure / strong (covalent) bonds / each carbon atom is bonded to four other carbon atoms / all carbon atoms in diamond are bonded together (1) 	reject ionic lattice reject layers reject bonds between molecules	
	 large amount of (heat) energy is needed to {separate the carbon atoms / break the bonds / break up lattice} (1) 	reject intermolecular forces being broken ignore just high heat	
		mark independently	

Q14.

Question number	Answer	Additional guidance	Mark
6	2.24 = 0.04 and $0.96 = 0.06(1)56.0 16.0$	allow ECF for MP2 and MP3 only.	(4)
	1:1.5/2:3 (1)		
	Fe ₂ O ₃ (1)		
	4Fe + 3O ₂ → 2 Fe₂O₃ (1)	allow $\frac{2.24}{56.0} = 0.04$ and $\frac{0.96}{32.0} = 0.03$ (1)	
		1.33:1/4:3 (1)	
		Fe ₂ O ₃ (1)	
		4Fe + $3O_2$ → 2Fe ₂ O ₃ (1)	
		NOTE: equation alone gains no marks.	

Q15.

Question number	Answer	Additional guidance	Mark
	A description that combines three of the following points to provide		(3)
	a method:		EXP
	 heat the magnesium (in crucible) (1) 	allow heat crucible (containing magnesium)	
	and any two from		
	 lift lid from time to time/allow to cool (1) 		
	 determine mass of crucible, lid and product (1) 	allow use of weigh in place of determine mass ignore 'measure' alone allow heat to constant mass	
	 subtract to find mass of oxygen combined (1) 	allow weigh at end /OWTTE	

Q16.

Question Number	Answer	Additional guidance	Mark
	final answer of 94 (g dm ⁻³) with or without working (2)	allow ECF (error carried forward) throughout	(2)
	OR <u>23.5</u> 250 (1) (= 0.094)	other final answers: 0.094 / 9.4 (1) 0.000094 or 9.4 x 10 ⁻⁵ (1)	AO 2 1
	0.094 x 1000 (1)		
	OR <u>250</u> (dm ³) (1) (= 0.25 (dm ³)) 1000	0.25 (dm³) (1)	
	<u>23.5</u> (1) 0.25		
	$\frac{OR}{1000}(1) = 4$ 250		
	4 x 23.5 (1)	allow <u>250</u> x 1000 or 10638(.3) (1) 23.5	

Q17.

Question number	Indicative content	Additional guidance	Mark
(i)	straight line of best fit (1 cm ³ to 5 cm ³)	ignore line between 0 and 1 and after 5 must be a single ruled line	(1)

 any line extrapolated to 6cm³ (1) 		(2)
 value read from their extrapolated line +/- 1 small square (1) 		(2)
	2 nd mark dependent on 1 st	
-	extrapolated line +/- 1	extrapolated line +/- 1 small square (1) 2 nd mark dependent on

Q18.

Question number	Answer	Additional guidance	Mark
(i)	Left : H ₂ SO ₄ (1)	reject superscript numbers	(2)
	Right : CuSO ₄ (1)	reject superscript numbers	
		incorrect balancing max 1	

Question number	Answer	Mark
(ii)	63.5 + 12 + 3x16 (1)	(2)
	= 123.5 (1)	

Question number	Answer	Mark
(iii)	 A bubble the gas through limewater, limewater turns cloudy The only correct answer is A 	(1)
	 B is not correct because test shows only an acidic gas C is not correct because test shows only that the gas does not support combustion D is not correct because test shows only an acidic gas 	

Question Number	Answer	Additional guidance	Mark
Number	1 mol of hydrogen atoms = a mass of 1.00 g = 6.02×10^{23} atoms 6.02×10^{23} H atoms has mass = 1.00 g(1) mass of 1 H atom = <u>1.00</u>	correct answer alone (3) if 1 x 6.02 x 10 ²³ is followed by atoms or particles, then award 1 st marking point on answer line 3.32 x 10 ⁻²⁴ (g) (2) ignore sig figs except for one	(3) AO 2 1
	(1) = $\begin{array}{c} 6.02 \times 10^{23} \\ 1.66 \times 10^{-24} \end{array}$ (g) (1)		

Q20.

Question number	Answer	Additional guidance	Mark
(i)	100 with or without working scores 2 40 + 12 + 3 x 16 (1) =100 (1)	ignore any units ecf for MP2 if using 12, 16 and 40, using addition and multiplication only	(2)
(ii)	56% without working scores 0 $\frac{56}{100}$ (1) (x 100) = 56 (%) (1)	56/answer to 4(d)(i) (1) x 100 (1) MP2 only for correctly x 100 some figure derived from the data given 100% scores 0	(2)

Q21.

Question number	Answer	Additional guidance	Mark
	0.005/ 5 x 10 ⁻³ mol with or without working scores 3	2 marks for (MUST show working): 5 0.1	(3)
	Mr = $63.5 + 32 + 4 \times 16(1)(=159.5)$ AND EITHER mass of copper sulfate = $50/1000 \times 15.95(1)(= 0.7975 \text{ g})$ moles = $0.7975/159.5(1)(= 0.005 \text{ mol})$	ecf in all stages	
	OR conc = $15.95/159.5(1) (=0.1 \text{ moldm}^{-3})$ moles = $50/1000 \times 0.1 = (0.005 \text{ mol})$		

Q22.

Question number	Answer	Additional guidance	Mark
(i)	relative formula mass = $192 + 12 + 28 + 16(1) = 248$ number of moles = $0.50/248$ or 0.002 or 2.0×10^{-3} or 2.02×10^{-3} (1)	award full marks for correct numerical answer without working. allow 1 mark max for ecf using incorrectly calculated value for relative formula mass allow any number of sig figs	(2) EXP
Question number	Answer	Additional guidance	Mark
(ii)	number of molecules = $2 \times 6.02 \times 10^{23}$ (1) = $1.2(04) \times 10^{24}$	allow 12(.04) x 10 ²³ without working	(1) GRAD

Q23.

Question number	Answer	Additional guidance	Mark
	final answer of $1.2(04) \times 10^{22}$ with or without working (2)	allow ECF	(2)
	OR		
	$\frac{3.94}{197} = 0.02$ (1)		
	$0.02 \times 6.02 \times 10^{23} = 1.2(04) \times 10^{22}$ (1)	allow 0.12(04) x 10 ²³	

Q24.

Question number	Answer	Additional guidance	Mark
	 1.8 x 10²⁴ with or without working scores 3 x 6.02 x 10²³ (1) = 1.8 x 10²⁴ (1) 	allow 18 x 10^{23} , 1.81 x 10^{24} , 1.806 x 10^{24} or any other form of correct answer to 2-4 sig figs allow 2 x 6.02 x $10^{23} = 1.2 \times 10^{24}$ (1)	(2)

Q25.

Question number	Answer	Additional guidance	Mark
	2.8g with or without working scores 2 0.043 x 65 (1) (=2.795)		(2)
	= 2.8 g (1)	allow 1 mark for a different calculation using 65 and 0.043, correctly evaluated, with working, rounded to 1 decimal place	

Q26.

Question number	Answer	Additional guidance	Mark
	MP1 for dividing by atomic massA:G $\frac{3.5}{7}$: $\frac{4.0}{16}$ 716	A ₂ G with no relevant working (1) ONLY AG ₂ (0)	(3)
	MP2 for deriving ratio from MP1 0.5 : 0.25 OR 2 : 1 (1) MP3 for ratio in MP2 to formula empirical formula A ₂ G (1)	For MP2: If they go on to calculate a different ratio in addition to 0.5:0.25 or 2:1 do not award MP2 ecf on step 1: If inverted, $\underline{7}$: $\underline{16}$ (0) 3.5 4.0 = 2 : 4 or 1 : 2 (1) AG_2 (1) allow 1 in empirical formula allow Li for A and O for G do not penalise incorrect case in formula	

Q27.

Question number	Answer	Additional guidance	Mark
	Al : Cl 0.270/27 : 1.065/35.5 (1) 0.01 : 0.03 (1) OR 1 : 3 empirical formula AlCl ₃ (1)	allow ECF Al : 0.270/27 = 0.01 (1) Cl : 1.065/35.5 = 0.03 (1) 27/0.27 : 35.5/1.065 100 : 33.3 (1) OR 3 : 1 Al ₃ Cl (1) formula alone with no working scores no marks.	(3) EXP

Question number	Answer		Additional guidance	Mar
	250 cm ³ contains 6.36 g			(3)
	$(1 \text{ cm}^3 \text{ solution contains}) \frac{6.36}{250}$ (g) (1) (=0.02544)		0.02544	EXP
	(1000 cm ³ solution co	ontains) <u>6.36</u> x 1000 (g) (1) 250	25.44 with or without working (2)	
	concentration	= 25.44 (g dm ⁻³)	25.4 with or without working (3)	
		= 25.4 (g dm ⁻³) (1)	(answer to 3 sig fig)	
	OR		other allows: 2.544 1 mark	
	volume of solution	= 250/1000 (1) (=0.250)	2.54 2 marks 0.0254 2 marks	
	(mass) concentration	$m = \frac{mass (in g)}{volume (in dm3)}$ = $\frac{6.36 \times 1000}{250}$ g (1)	2.544 x 10 ⁻⁵ 1 mark 2.54 x 10 ⁻⁵ 2 marks with working: 39.31 0 marks 39.3 1 mark	
	concentration	= 25.44 (g dm ⁻³) = 25.4 (g dm ⁻³) (1)	(answer to 3 sig fig)	

Q29.

Question number	Answer	Additional guidance	Mark
	final answer of 114 (g dm ⁻³) with or without working (3)	allow ECF throughout	(3)
	OR <u>28.4</u> (1) (= 0.1136) 250 0.1136 x 1000 (1) (= 113.6)	250 (dm ³) (1) (= 0.250 (dm ³)) 1000 28.4 (1) (= 113.6) 0.250	
		OR <u>1000</u> (1) = 4 250 4 x 28.4 (1) (= 113.6)	
	= 114 (g dm ⁻³) (1)	Must have 3sf for MP3 0.114 scores 2	
		Lose MP1 if rounded incorrectly e.g, to 0.11 or 0.113 but mark on	

Name: _____

Topic 3 Chemistry 2022 Exam

Date:

Time:

Total marks available:

Total marks achieved: _____

Mark Scheme

Q1.

Question Number	Answer	Acceptable answers	Mark
(i)	D salt and water only		(1)

Question Number	Answer	Acceptable answers	Mark
(ii)	 A description to include two from (green) solid {disappears / dissolves} (1) effervesces / bubbles (of colourless gas) given off (1) 	ignore references to names of products fizz	(2)
	• blue (solution) forms (1)	goes blue ignore incorrect colours of solution ignore temperature rise	

Q2.

Question Number	Answer	Acceptable answers	Mark
(i)	D salt and water only		(1)

Answer	Acceptable answers	Mark
 A description to include two from (green) solid {disappears / dissolves} (1) effervesces / bubbles (of colourless gas) given off (1) blue (solution) forms (1) 	ignore references to names of products fizz goes blue ignore incorrect colours of solution	(2)
	 A description to include two from (green) solid {disappears / dissolves} (1) effervesces / bubbles (of colourless gas) given off (1) 	A description to include two from • (green) solid {disappears / dissolves} (1) ignore references to names of products • effervesces / bubbles (of colourless gas) given off (1) fizz • blue (solution) forms (1) goes blue ignore incorrect colours of

Q3.

Question number	Answer	Additional guidance	Mark
(i)	ACID use measuring cylinder / pipette / burette (1) BASE balance / scales / weigh out amount (1)	must name apparatus ignore weigh the liquid allow use portion of known mass / use measured amount in g / specific mass given [from 0.1 to 10g] allow weight for mass	(2)
(ii)	START colourless END pink / magenta	both START and END required for mark ignore clear	(1)
(iii)	 An explanation linking {hydrogen ions/ H⁺} {reacted / neutralised} (1) {concentration falls/ fewer} H⁺ / {concentration rises/ more} OH⁻ (1) 	allow H ⁺ + OH ⁻ H₂O (1) for MP1	(2)

Q4.

Question number	Answer	Additional guidance	Mark
(i)	ACID use measuring cylinder / pipette / burette (1) BASE balance / scales / weigh out amount (1)	must name apparatus ignore weigh the liquid allow use portion of known mass / use measured amount in g / specific mass given [from 0.1 to 10g] allow weight for mass	(2)

Question number	Answer	Additional guidance	Mark
(ii)	START colourless	ignore clear	(1)
	END pink / magenta		

Question number	Answer	Additional guidance	Mark
(iii)	 An explanation linking {hydrogen ions/ H⁺} {reacted / neutralised} (1) {concentration falls/ fewer} H⁺ / {concentration rises/ more} OH⁻ (1) 	allow H ⁺ + OH ⁻ \longrightarrow H ₂ O for MP1	(2)

Q5.

Question Number	Answer	Additional guidance	Mark
(i)	C neutral (1)		(1)
Question Number	Answer		Mark
(ii)	 An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark) to react all the (nitric) acid in the solution (1) so that the calcium nitrate solution is pure (1) 		(2)
Question	Answer		Mark

Question Number	Answer	Mark
(iii)	$CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O + CO_2 (3)$	
	left hand side formulae (1) right hand side formulae (1) balancing correct formulae (1)	(3)

Q6.

Question Number	Answer	Mark
	 An answer that combines knowledge (1 mark) and understanding (2 marks) to provide a logical description use of a pH (probe and) meter / suitable universal indicator paper (1) (after each addition of calcium oxide) stir (1) record pH after each addition (1) 	
		(3)

Q7.

Question number	Answer	Additional guidance	Mark
(i)	Left : H ₂ SO ₄ (1)	reject superscript numbers	(2)
	Right : CuSO4 (1)	reject superscript numbers	
		incorrect balancing max 1	

Question number	Answer	Mark
(ii)	63.5 + 12 + 3x16 (1)	(2)
	= 123.5 (1)	

Question number	Answer	Mark
(iii)	 A bubble the gas through limewater, limewater turns cloudy The only correct answer is A 	(1)
	 B is not correct because test shows only an acidic gas C is not correct because test shows only that the gas does not support combustion D is not correct because test shows only an acidic gas 	

Question number	Answer	Additional guidance	Mark
(i)	Left : H ₂ SO ₄ (1)	reject superscript numbers	(2)
	Right : CuSO ₄ (1)	reject superscript numbers	
		incorrect balancing max 1	

Question number	Answer	Mark
(ii)	63.5 + 12 + 3x16 (1)	(2)
	= 123.5 (1)	

Q9.

Question number	Answer	Mark	
	C lead and bromine is the only correct answer	(1)	
	A is incorrect because lead is produced at the cathode		
	B is incorrect because lead and bromine are produced		
	D is incorrect because bromine is produced at the anode		

Q10.

Question number	Answer	Mark
	 C lead and bromine is the only correct answer A is incorrect because lead is produced at the cathode B is incorrect because lead and bromine are produced D is incorrect because bromine is produced at the anode 	(1)

Q11.

Question number	Answer	Additional guidance	Mark
(i)	Fiter turnel Fiter paper Constant task (2) OR	reject diagram with funnel 'closed' at bottom/top but can score MP2 allow 'closed' filter paper allow any suitable apparatus for conical flask e.g. beaker	(2)
	diagram: funnel with separate filter paper and (conical) flask (1)	'flask' label should be appropriate to apparatus drawn	
	labels: (filter) funnel and filter paper and (conical) flask (1)	ignore labelling of filtrate/residue etc	

Question number	Answer	Additional guidance	Mark
(ii)	 a description including any three from: heat solution (to concentrate) (1) then either leave solution {in warm place / to crystallise} (1) scrape crystals (from container) / pat dry between filter papers (1) OR leave solution {to crystallise / to cool} (1) filter off crystals / decant liquid from the crystals / pat dry between filter papers / dry in oven (1) 	if no other marks are scored , allow max 1 for crystallisation (1)	(3)

Q12.

Question number	Answer	Additional guidance	Mark
(i)	Filer tannel Filer paper Consoil Resk (2) OR	reject diagram with funnel 'closed' at bottom/top but can score MP2 allow 'closed' filter paper allow any suitable apparatus for conical flask e.g. beaker	(2)
	diagram: funnel with separate filter paper and (conical) flask (1) labels: (filter) funnel and filter	`flask' label should be appropriate to apparatus drawn	
	paper and (conical) flask (1)	ignore labelling of filtrate/residue etc	

Question number	Answer	Additional guidance	Mark
	 Answer a description including any three from: heat solution (to concentrate) (1) then either leave solution {in warm place / to crystallise} (1) scrape crystals (from container) / pat dry between filter papers (1) OR leave solution {to crystallise / to cool} (1) filter off crystals / decant liquid from the crystals / pat dry between filter papers / dry in oven (1) 		(3)
		marks are scored , allow max 1 for crystallisation (1)	

Q13.

Question number	Answer	Additional guidance	Mark
(i)	A description including		(2)
	apply lighted splint (1)	allow flame / ignite gas ignore `squeaky pop test' / glowing splint	
	gas burns / (squeaky) pop (1)	second mark is dependent on first	

Question number	Answer	Mark
(ii)	 B oxygen The only correct answer is B A, C & D these gases are not produced in the electrolysis of sodium sulfate solution 	(1)

Question number	Answer	Additional guidance	Mark
(iii)	 electrical energy / electricity (1) {decomposes / breaks down / splits} {electrolytes / (ionic) compounds / substances} (1) 	allow electric current allow <u>separates</u> ions reject decomposing elements for MP2	(2)

Q14.

Question number	Answer	Additional guidance	Mark
(i)	 A description including apply lighted splint (1) 	allow flame / ignite gas ignore `squeaky pop test' / glowing splint	(2)
	gas burns / (squeaky) pop (1)	second mark is dependent on first	

Question number	Answer	Mark
(ii)	B oxygen is the only correct answer	(1)
	A, C & D these gases are not produced in the electrolysis of sodium sulfate solution	

Question number	Answer	Additional guidance	Mark
(iii)	electrical energy / electricity (1)	allow electric current	(2)
	{decomposes / breaks down / // // //	allow separates ions	
	splits} {electrolytes / (ionic) compounds / substances} (1)	reject decomposing elements for MP2	

Q15.

Question Number	Answer	Mark
(i)	chlorine (1)	(1)
Question Number	Answer	Mark
(ii)	 A description to include lighted splint / ignite gas (1) gas burns / (squeaky) pop (if air is present) (1) 	(2)

Q16.

Question Number	Answer	Additional guidance	Mark
(i)	A diagram of a workable apparatus showing a complete		(2)
	circuit including	max 1 if circuit not complete	AO 1 2
	 electrodes labelled in (copper sulfate) solution (1) 	allow labelling as 'electrodes' or 'anode' and 'cathode' or 'copper'	
		ignore `connected to mains' allow symbol for cell/battery	
	 {power supply / power pack / battery} connected (1) 	even if wrong way round	

Question Number	Answer	Additional guidance	Mark
(ii)	An explanation linking the following point to a maximum of four	ignore references to zinc, chlorine and zinc chloride	(4) AO 2 1
	 anode lost copper and cathode gained copper / reaction at cathode is reverse of reaction at anode / copper ions move into solution at anode AND copper ions move out of solution at cathode (1) 	allow copper atoms are oxidised	
	and any three from	(1)	
	 at anode copper atoms become copper ions (1) and 	marking points independently	
	lose two electrons (1) OR (at anode) Cu \rightarrow Cu ²⁺ +	allow copper ions are reduced (1)	
	2e (2)	marking points independently	
	 at cathode copper ions become copper atoms (1) and gain two electrons (1) OR (at cathode) Cu²⁺ + 2e → Cu (2) 	penalise wrong use of atom / ion once only penalise wrong use of reduced / oxidised once only	

Q17.

Question Number	Answer	Additional guidance	Mark
(i)	A diagram of a workable apparatus showing a complete		(2)
	circuit including	max 1 if circuit not complete	AO 1 2
	 electrodes labelled in (copper sulfate) solution (1) 	allow labelling as `electrodes' or `anode' and `cathode' or `copper'	
		ignore 'connected to mains' allow symbol for cell/battery	
	 {power supply / power pack / battery} connected (1) 	even if wrong way round	

Question Number	Answer	Additional guidance	Mark
(ii)	An explanation linking the following point to a maximum of four	ignore references to zinc, chlorine and zinc chloride	(4) AO 2 1
	 anode lost copper and cathode gained copper / reaction at cathode is reverse of reaction at anode / copper ions move into solution at anode AND copper ions move out of solution at cathode (1) 	- 11	
	and any three from	allow copper atoms are oxidised (1)	
	 at anode copper atoms become copper ions (1) and 	marking points independently	
	lose two electrons (1) OR (at anode) Cu \rightarrow Cu ²⁺ +	allow copper ions are reduced (1)	
	2e (2)	marking points independently	
	 at cathode copper ions become copper atoms (1) and gain two electrons (1) OR (at cathode) Cu²⁺ + 2e → Cu (2) 	penalise wrong use of atom / ion once only penalise wrong use of reduced / oxidised once only	

Q18.

Question Number	Answer	Mark
(i)	C chlorine zinc	(1)
	The only correct answer is C	AO 2 1
	A is not correct because oxygen cannot be produced by the electrolysis of this molten salt	
	B is not correct because hydrogen cannot be produced by the electrolysis of this molten salt	
	D is not correct because hydrogen and oxygen cannot be produced by the electrolysis of this molten salt	

Question Number	Answer	Mark
(ii)	D it contains ions that can move	(1)
	The only correct answer is D	AO 1 1
	A is not correct because molten zinc chloride does not contain molecules	
	B is not correct because molten zinc chloride does not have a giant structure	
	C is not correct because delocalised electrons are not present	

Q19.

Question Number	Answer	Mark
(i)	C chlorine zinc	(1)
	The only correct answer is C	AO 2 1
	A is not correct because oxygen cannot be produced by the electrolysis of this molten salt	
	B is not correct because hydrogen cannot be produced by the electrolysis of this molten salt	
	D is not correct because hydrogen and oxygen cannot be produced by the electrolysis of this molten salt	
Question Number	Answer	Mark
(ii)	D it contains ions that can move	(1)
(11)	D it contains ions that can move The only correct answer is D	(1) AO 1 1
(11)		
(11)	The only correct answer is D A is not correct because molten zinc chloride does not contain	

Q20.

Question Number	Answer	Acceptable answers	Mark
(i)	electrical (energy) / electricity / direct (electric) current		(1)

Question Number	Answer	Acceptable answers	Mark
(ii)	 A description including {light / ignite} gas / lighted splint (1) gas burns / (squeaky) pop (if air is present) (1) 	reject glowing splint second mark conditional on first	(2)

Q21.

Question Number	Answer	Acceptable answers	Mark
(i)	electrical (energy) / electricity / direct (electric) current		(1)

Question Number	Answer	Acceptable answers	Mark
(ii)	A description including		(2)
	 {light / ignite} gas / lighted splint (1) 	reject glowing splint	
	 gas burns / (squeaky) pop (if air is present) (1) 	second mark conditional on first	

Q22.

Question Number	Indicative Content	Mark
QWC *	A description / explanation including some of the following points marks can be scored from diagrams incorrectly balanced equations can be used as evidence of reaction occurring but po not otherwise credited electrolysis process • ions move when current passed • negative ions move to anode • overall decomposition of water • $2H_2O \rightarrow 2H_2+O_2$ Anode/ positive electrode • sulphate ions move to anode • hydroxide ions move to anode • hydroxide ions lose electrons/oxidation • hydroxide ions form oxygen • half equation: $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ • half volume gas at this electrode • oxygen test: glowing splint in gas relights cathode/ negative electrode • sodium ions move to cathode • hydrogen ions gain electrons / reduction • hydrogen ions form hydrogen • half equation: $2H^+ + 2e^- \rightarrow H_2$ • double volume gas at this electrode • hydrogen test: lit splint in gas burns/ pops • hence double volume of hydrogen gas	(6)

Level	0	No rewardable content
1	1 - 2	 a limited description e.g. states which ions go to which electrode the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 a simple explanation e.g. explain formation of one product the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed explanation e.g. explaining formation of BOTH products at electrodes the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Q23.

Questio Number		Indicative Content	Mark
QWC	*	A description / explanation including some of the following points marks can be scored from diagrams incorrectly balanced equations can be used as evidence of reaction occurring but po not otherwise credited electrolysis process • ions move when current passed • negative ions move to anode • overall decomposition of water • $2H_2O \rightarrow 2H_2+O_2$ Anode/ positive electrode • sulphate ions move to anode • hydroxide ions lose electrons/oxidation • hydroxide ions lose electrons/oxidation • hydroxide ions form oxygen • half equation: $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ • half volume gas at this electrode • oxygen test: glowing splint in gas relights cathode/ negative electrode • sodium ions move to cathode • hydrogen ions gain electrons / reduction • hydrogen ions form hydrogen • half equation: $2H^+ + 2e^- \rightarrow H_2$ • double volume gas at this electrode • hydrogen test: lit splint in gas burns/ pops • hence double volume of hydrogen gas	(6)

Level	0	No rewardable content
1	1 - 2	 a limited description e.g. states which ions go to which electrode the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 a simple explanation e.g. explain formation of one product the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed explanation e.g. explaining formation of BOTH products at electrodes the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Q24.

Question Number	Answer	Acceptable answers	Mark
(a)	Cl ⁻ and OH ⁻	Reject if any other ions given Allow names / chloride and hydroxide	(1)
Question Number	Answer	Acceptable answers	Mark
(b)	D lead and bromine		(1)

Question Number	Answer	Acceptable answers	Mark
(c)	A explanation to include: oxidation is the loss of electrons (1) reduction is the gain of electrons (1)	oxidation is the gain of electrons AND reduction is the loss of electrons (1)	(2)

Question Number	Answer	Acceptable answers	Mark
(d)	A explanation to include any two from:		(2)
	to put a layer of one metal onto another metal (1)		
	change / improve the appearance (of metal objects) (1)	allow to give shiny appearance / look nicer	
	improve the resistance to corrosion (of metal objects) (1)	allow prevents corrosion ignore rusting unless linked to iron/steel	
	qualified reference to cost eg thin layer of expensive metal on cheaper metal (1)		

Q25.

Question Number	Answer	Acceptable answers	Mark
(a)	Cl ⁻ and OH ⁻	Reject if any other ions given Allow names / chloride and hydroxide	(1)
Question Number	Answer	Acceptable answers	Mark
(b)	D lead and bromine		(1)
Question Number	Answer	Acceptable answers	Mark
(c)	A explanation to include: oxidation is the loss of electrons (1) reduction is the gain of electrons (1)	oxidation is the gain of electrons AND reduction is the loss of electrons (1)	(2)

Question Number	Answer	Acceptable answers	Mark
(d)	A explanation to include any two from:		(2)
	to put a layer of one metal onto another metal (1)		
	change / improve the appearance (of metal objects) (1)	allow to give shiny appearance / look nicer	
	improve the resistance to corrosion (of metal objects) (1)	allow prevents corrosion ignore rusting unless linked to iron/steel	
	qualified reference to cost eg thin layer of expensive metal on cheaper metal (1)		

Q26.

Question Number	Answer	Acceptable answers	Mark
(i)	cathode		(1)
-	Reject anode		

Question Number	Answer	Acceptable answers	Mark
(ii)	A description to include ANODE/IMPURE COPPER/ +VE ELECTRODE • becomes smaller/ loses mass / loses copper / copper atoms form ions / copper is oxidised / copper (ions) enter solution (1) CATHODE/ PURE COPPER/ -VE	allow half equation	(2)
	 ELECTRODE {red-brown/copper} deposit/ becomes larger / gains mass / gains copper / copper ions are reduced / copper (ions) from solution add to electrode (1) 	allow half equation	

Question Number	Answer	Acceptable answers	Mark
(iii)	D reduction		(1)
Question Number	Answer	Acceptable answers	Mark
(iv)	An explanation linking ions / cations / copper ions / anions / sulfate ions (1)	reject electrons / atoms / molecules ignore `charged particles'	(2)
	(are free to) <u>move</u> (in solution) (1)	allow flow 2 nd mark dependent on 1 st MP	

Question Number	Answer	Acceptable answers	Mark
(i)	cathode		(1)
	Reject anode		

Question Number	Answer	Acceptable answers	Mark
(ii)	A description to include ANODE/IMPURE COPPER/ +VE ELECTRODE • becomes smaller/ loses mass / loses copper / copper atoms form ions / copper is oxidised / copper (ions) enter solution (1)	allow half equation	(2)
	CATHODE/ PURE COPPER/ -VE ELECTRODE • {red-brown/copper} deposit/ becomes larger / gains mass / gains copper / copper ions are reduced / copper (ions) from solution add to electrode (1)	allow half equation	

Question Number	Answer	Acceptable answers	Mark
(iii)	D reduction		(1)
Question Number	Answer	Acceptable answers	Mark
(iv)	An explanation linking ions / cations / copper ions / anions / sulfate ions (1)	reject electrons / atoms / molecules ignore `charged particles'	(2)
	(are free to) <u>move</u> (in solution) (1)	allow flow 2 nd mark dependent on 1 st MP	

Q28.

Question Number	Answer	Additional guidance	Mark
(i)	C neutral (1)		(1)
Question Number	Answer		Mark
(ii)			(2)
Question Number	Answer		Mark
(iii)	CaCO ₃ + 2HNO ₃ → Ca(NO ₃) ₂ · left hand side formulae (1) right hand side formulae (1 balancing correct formulae (1)	(3)

Q29.

Question number	Answer	Mark
	 An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (3 marks): hydrogen (H⁺) and sodium (Na⁺) ions attracted to cathode, hydroxide (OH⁻) ions and sulfate (SO₄²⁻) ions attracted to anode (1) because the ions are attracted to the oppositely charged electrode (1) 2 hydrogen ions/2 H⁺ accept 2 e to form hydrogen molecule/H₂ (1) 4 hydroxide ions/4 OH⁻ lose 4 e to form oxygen molecule/O₂ (1) 	(4)

Q30.

Question Number	Answer	Mark
	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark)	
	 acid is diluted 10 times (1) causes increase in pH by 1 / pH of diluted solution is 2 (1) 	(2)

Q31.

Answer	Additional guidance	Mark
 an explanation linking fully dissociates (1) to form {H⁺/hydrogen} ions (1) 	allow ionises/splits up	(2)
Answer		Mark
3 / pH 3		(1)
	 an explanation linking fully dissociates (1) to form {H⁺/hydrogen} ions (1) 	guidance an explanation linking • fully dissociates (1) • to form {H ⁺ /hydrogen} ions (1)

Q32.

Question number	Answer	Additional guidance	Mark
(i)	 an explanation linking fully dissociates (1) to form {H⁺/hydrogen} ions (1) 	allow ionises/splits up	(2)

Question number	Answer	Mark
(ii)	3 / pH 3	(1)

Q33.

Question Number	Answer	Mark
An explanation that combines identification - applic knowledge (2 marks) and reasoning/justification - a of understanding (2 marks)		
	 hydrochloric acid is (almost) fully dissociated into ions (1) ethanoic acid is only slightly dissociated into ions (1) but the concentration of acid in the hydrochloric acid is lower (1) so the concentration of hydrogen ions in the hydrochloric acid is lower (1) 	
		(4)

Q34.

Question Number	Answer	Mark
	An explanation that combines identification via a judgment (1 mark) to reach a conclusion via justification/reasoning (1 mark)	
	 solution is alkaline (1) excess hydroxide ions are present / sodium and hydroxide ions in solution / sodium hydroxide solution formed (1) 	30.54
		(2)

Q35.

Question Number	Answer	Mark
	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark):	
	 sodium and chloride ions present (1) these ions can move (in solution) (1) 	(2)

Q36.

Question number	Answer	Additional guidance	Mark
(i)	 An explanation linking solution from titration contains an indicator (1) therefore second solution used with no indicator / indicator would contaminate salt (1) 	MP2 dependant on MP1 allow original mixture was contaminated by indicator so doesn't form a pure salt (2)	(2)

Question number	Answer	Additional guidance	Mark
(ii)	final answer of 120% with or without working (2)		(2)
	OR		
	$\frac{0.84}{0.70}$ (=1.2) (1)		
	0.84 x 100 (=120(%)) (1) 0.70	allow any fraction x100 (1)	

Question number	Answer	Additional guidance	Mark
(iii)	{the salt/solid/potassium chloride} was still wet/ not all of the water had been evaporated off		(1)

Question number	Answer	Additional guidance	Mark
(iv)	final answer of 80.5 with or without working (4) OR	allow ECF throughout	(4)
	total mass: 56 + 36.5 (=92.5) / 74.5 + 18 (=92.5) (1)	92.5 seen (1)	
	<u>74.5</u> (= 0.8054) (1) 92.5		
	<u>74.5</u> x 100 (=80.540) (1) 92.5		
	= 80.5 (1)	incorrect answer with working to 1 decimal place (1)	
		50.0/100.0 does not score MP4	

Q37.

Question Number	Answer	Additional guidance	Mark
	$2H^+ + 2e^{(-)} \rightarrow H_2 /$ $2H^+ \rightarrow H_2 - 2e^{(-)} (2)$	allow use of = or \rightleftharpoons in place of \rightarrow allow multiples	(2)
	species in correct place as shown above (1) balancing of correct species in correct place (1)	reject h2 / h ₂ / H2 / H ²	AO 1 1

Q38.

Question Number	Answer	Additional guidance	Mark
	$2H^+ + 2e^{(-)} \rightarrow H_2 /$ $2H^+ \rightarrow H_2 - 2e^{(-)} (2)$	allow use of = or \rightleftharpoons in place of \rightarrow allow multiples	(2)
		reject h2 / h ₂ / H2 / H ²	AO 1 1
-	species in correct place as shown above (1) balancing of correct species in correct place (1)		

Q39.

Question number	Answer	Additional guidance	Mark
(i)	pH meter/ pH probe	ignore data logger alone reject litmus / phenolphthalein / universal indicator solution / pH paper	(1)
Question number	Answer	Additional guidance	Mark
(ii)	 increases pH (1) until pH above 7 (1) and an explanation linking REACTION {magnesium hydroxide / base / alkali / OH⁻ ions} {reacts with / neutralises} {the acid / the H⁺ ions} IONS REMAINING 	allow until pH = 7 ignore until neutral	(4)
	 so the hydrogen ions concentration is reduced / all hydrogen ions reacted / there is an excess of hydroxide ions (1) 	ignore there is an excess of magnesium hydroxide	

Q40.

Question number	Answer	Additional guidance	Mark
(i)	pH meter/ pH probe	ignore data logger alone reject litmus / phenolphthalein / universal indicator solution / pH paper	(1)

Question number	Answer	Additional guidance	Mark
(ii)	 increases pH (1) until pH above 7 (1) 	allow until pH = 7 ignore until neutral	(4)
	and an explanation linking REACTION • {magnesium hydroxide / base / alkali / OH ⁻ ions} {reacts with / neutralises} {the acid / the H ⁺ ions}	ignore undi neutral	
	IONS REMAINING • so the hydrogen ions concentration is reduced / all hydrogen ions reacted / there is an excess of hydroxide ions (1)	ignore there is an excess of magnesium hydroxide	

Q41.

Question Number	Answer	Mark
	$2H^+ + 2e \rightarrow H_2$ (2)	
correct species (1) balancing of correct species (1)	(2)	

Q42.

Question Number	Answer	Mark	
	$2H^+ + 2e \rightarrow H_2$ (2) correct species (1)		
	balancing of correct species (1)	(2)	

Q43.

Question Number	Answer	Additional guidance	Mark
	pH {increases / goes up} by <u>one</u> /	ignore {increases / goes up}	(1)
	moves <u>1</u> closer to neutral	alone	AO 1 1

Q44.

Question Number	Answer	Additional guidance	Mark	
	pH {increases / goes up} by one /	ignore {increases / goes up}	(1)	
	moves <u>1</u> closer to neutral	alone	AO 1 1	

Q45.

Question number	Answer	Mark
	D	(1)

Q46.

Question number	Answer	Mark
	 An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (1 mark): J and K are electrolytes (1) because their solutions conduct electricity and are decomposed (1) 	(2)

Q47.

Question number	Answer	Mark
	Any two of the following points.	
	For the acid, use the same: • volume (1)	
	concentration (1)	
	temperature (1)	(2)

Q48.

Question number	Answer	Mark
(i)	С	(1)
Question number	Answer	Mark
(ii)	с	(1)

Q49.

Question number	Ans	swer			Mark
		salt	soluble	insoluble	
		ammonium chloride	~		
		lithium sulfate	~		
		magnesium carbonate		~	

Q50.

Question Number	Answer	Mark
	D calcium carbonate (1)	791
		(1)

Q51.

Question Number	Answer	Mark
	An answer that combines knowledge (1 mark) and understanding (2 marks) to provide a logical description	
	 use of a pH (probe and) meter / suitable universal indicator paper (1) 	
	 (after each addition of calcium oxide) stir (1) record pH after each addition (1) 	30 35
		(3)

Q52.

Question Number	Answer	Mark
	$H^+ + OH^- \rightarrow H_2O_{(2)}$ left hand side (1) right hand side (1)	
		(2)

Q53.

Question Number	Answer	
	{sodium/ potassium / ammonium} carbonate (solution) / any soluble sulfate (solution) / sulfuric acid	(1)

Q54.

Question Number	Answer	Additional guidance	Mark
	A description to include • filter (1) and two in a logical order from • crystallisation (1) • heat solution (to concentrate) (1) • allow to cool (1) • dry crystals between filter papers (1)	if filtration not first stage, ignore it and give maximum 2 marks allow description of filtration ignore filtration to obtain nickel sulfate (crystals) allow 'leave until water evaporates' / use of water bath / evaporate {water/the solution} allow leave {until crystals form / for a few hours / in a warm place / on a window sill} allow 'dry crystals in (warm) oven' if alternative methods of making nickel sulfate solution described, max 1 mark from	(3) AO 2 2
		last four marking points	

Question Number	Answer	Additional guidance	Mark
	A description to include	if filtration not first stage, ignore it and give maximum 2	(3) AO 2 2
	• filter (1) and two in a logical order from	marks allow description of filtration ignore filtration to obtain nickel sulfate (crystals)	
	 crystallisation (1) 		
	 heat solution (to concentrate) (1) allow to cool (1) 	allow `leave until water evaporates' / use of water bath / evaporate {water/the solution}	
	 dry crystals between filter papers (1) 	allow leave {until crystals form / for a few hours / in a warm place / on a window sill}	
		allow `dry crystals in (warm) oven'	
		if alternative methods of making nickel sulfate solution described, max 1 mark from last four marking points	

Q56.

Question Number	Indicative content
	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.
	AO2 (3 marks)
	suitable acid: sulfuric acid
	 suitable substance : magnesium oxide / magnesium carbonate /
	magnesium hydroxide / magnesium
	 equation for reaction:
	$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O/$
	$Mg(OH)_2 + H_2SO_4 \rightarrow MgSO_4 + 2H_2O/$
	$MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + H_2O + CO_2/$
	$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$
	AO3 (3 marks)
	 add solid to warmed acid until in excess solid remains (oxide and
	hydroxide) / add solid a little at a time until no more bubbles (carbonate/metal)
	 filter off the excess solid, pour remaining solution into an evaporating
	basin
	 {heat solution / leave the water to evaporate}
	 until pure salt crystals form and then dry salt crystals with absorbent paper/leave to dry.

Level	Mark	Descriptor
64 63	0	No rewardable material.
Level 1	1-2	 The plan attempts to link and apply knowledge and understanding of scientific enquiry, techniques and procedures, flawed or simplistic connections made between elements in the context of the question. (AO2) Analyses the scientific information but understanding and connections are flawed. An incomplete plan that provides limited synthesis of understanding. (AO3)
Level 2	3-4	 The explanation is mostly supported through linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, some logical connections made between elements in the context of the question. (AO2) Analyses the scientific information and provides some logical connections between scientific enquiry, techniques and procedures. A partially completed plan that synthesises mostly relevant understanding, but not entirely coherently. (AO3)
Level 3	5-6	 The explanation is supported throughout by linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, logical connections made between elements in the context of the question. (AO2) Analyses the scientific information and provide logical connections between scientific concepts throughout. A well-developed plan that synthesises relevant understanding coherently. (AO3)

Q57.

Question number	Answer	Mark
(i)	С	(1)
Question number	Answer	Mark
(ii)	С	(1)

Q58.

Question Number	Answer	Mark
(i)	chlorine (1)	(1)

Question Number	Answer	Mark
(ii)	 A description to include lighted splint / ignite gas (1) gas burns / (squeaky) pop (if air is present) (1) 	(2)

Q59.

Question number	Answer	Additional Guidance	Mark
(i)	use <u>pH meter</u> / <u>pH probe</u> (1)	allow <u>pH paper</u> / <u>Universal indicator</u> reject other named indicators / 'just 'indicator'	(1)

Question number	Answer	Mark
(ii)	D ten times higher	(1)
	A is incorrect because a pH difference in 1 reflects a 10 fold difference in [H ⁺]	
	B is incorrect because a pH difference in 1 reflects a 10 fold difference in [H ⁺]	
	C is incorrect because a lower pH means a higher [H ⁺]	

Q60.

Question number	Answer	Additional guidance	Mark
(i)	neutralisation OR exothermic	allow exothermic	(1)

Question number	Answer	Mark
(ii)	D ammonium nitrate is the only correct answer	(1)
	 A is incorrect because the cation is ammonium and the anion is nitrate B is incorrect because the cation is ammonium 	
	C is incorrect because anion is nitrate	

Q61.

Question number	Answer	Additional guidance	Mark
	 Any TWO from no more bubbles / fizzing (1) no further change in colour (1) 	ignore references to pH	(2)
	 no further change in colour (1) {solid / copper carbonate} remains at bottom of flask / no more {solid / copper carbonate} dissolves (1) allow cloudy/opaque liquidity ignore no more copper carbonate will react 		

Q62.

Question number	Answer	Additional guidance	Mark
	 Any TWO from no more bubbles / fizzing (1) no further change in colour (1) 	ignore references to pH	(2)
	• {solid / copper carbonate} remains at bottom of flask / no more {solid / copper carbonate} dissolves (1) allow cloudy/opaque liquid ignore no more copper carbonate will react		

Q63.

Question number	Answer	Additional Guidance	Mark
(i)	use <u>pH meter</u> / <u>pH probe</u> (1)	allow <u>pH paper</u> / <u>Universal indicator</u> reject other named indicators / `just `indicator'	(1)
Question number	Answer		Mark
(ii)	B is incorrect because a pH differen		

Q64.

Question number	Answer	Additional guidance	Mark
(i)	(squeaky) pop / gas burns / water forms	allow explosion / bang / flame / fire / energy released ignore reaction occurs / ignites / set alight ignore references to splints (glowing or lit)	(1)
(ii)	A description to include • volumes going up: (oxygen/ hydrogen/ gas) increase (with time) / volume (directly) proportional to time (1)	allow hydrogen goes up by 4 (cm ³) each time / by 2 cm ³ per minute / equivalent for oxygen for MP1	(2)
	 quantitative comparing hydrogen and oxygen: (volume of) hydrogen double (volume of) oxygen 	explicit reference needed to a ratio and not just quoting 2 figures	
	/ ORA / 2:1 ratio (1)	allow amount in place of volume throughout	
		twice as much hydrogen produced as oxygen (1)	
		rate of hydrogen production double that of oxygen (2)	

Q65.

Question number	Answer	Additional guidance	Mark
(i)	(squeaky) pop / gas burns / water forms	allow explosion / bang / flame / fire / energy released ignore reaction occurs / ignites / set alight ignore references to splints (glowing or lit)	(1)

Question number	Answer		Mark
(ii)	A description to include • volumes going up: (oxygen/ hydrogen/ gas) increase (with time) / volume (directly) proportional to time (1)	allow hydrogen goes up by 4 (cm ³) each time / by 2 cm ³ per minute / equivalent for oxygen for MP1	(2)
	 quantitative comparing hydrogen and oxygen: (volume of) hydrogen double (volume of) oxygen / ORA / 2:1 	explicit reference needed to a ratio and not just quoting 2 figures	
	ratio (1)	allow amount in place of volume throughout	
		allow twice as much hydrogen produced as oxygen (1)	
		allow rate of hydrogen production double that of oxygen (2)	

Q66.

Question number	Answer	Mark
 (i) An explanation that makes reference to: identification – knowledge (1 mark) and reasoning /justification – knowledge (1 mark): a strong acid is completely ionised in solution/exists completely as ions (1) but a weak acid is only partly ionised/exists mainly as molecules with very few ions present (1) 		(2)
Question number	Answer	Mark
(ii)	hydroxide ions react with hydrogen ions and reduce the hydrogen ion concentration therefore increase pH (1)	(1)

Q67.

Question Number	Answer	Mark	
	<pre>{sodium/ potassium / ammonium} carbonate (solution) / any soluble sulfate (solution) / sulfuric acid</pre>	(1)	

Q68.

Question Number	Answer	Additional guidance	Mark
(i)	A description including		(2)
	 apply lighted splint (1) 	allow flame / ignite gas / fire	AO 2 2
	 (squeaky) pop (1) 	ignore `squeaky pop test' / glowing splint	
-		second mark is dependent on first	
Question	Answer		Mark

Question Number	Answer		Mark
(ii)	An explanation linking		(2)
	 loss of electron(s) (1) 	allow gains two electrons for 1 mark	AO 1 1
	 two electrons (1) 	zero marks overall if sharing of electrons / gain or loss of protons / positive electrons	
		marks can be awarded for suitably drawn diagram / half equation	

Q69.

Question Number	Answer	Additional guidance	Mark
(i)	A description including	(2	(2)
	 apply lighted splint (1) 	allow flame / ignite gas / fire	AO 2 2
	 (squeaky) pop (1) 	ignore `squeaky pop test' / glowing splint	
		second mark is dependent on first	

Question Number	Answer		Mark
(ii)	An explanation linking		(2)
	 loss of electron(s) (1) two electrons (1) 	allow gains two electrons for 1 mark zero marks overall if sharing of electrons / gain or loss of protons / positive electrons marks can be awarded for suitably drawn diagram / half equation	AO 1 1

Q70.

Question Number	Answer	Mark
	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark)	
	 acid is diluted 10 times (1) causes increase in pH by 1 / pH of diluted solution is 2 (1) 	(2)

Q71.

Question Number	Answer	Acceptable answers	Mark
(i)	 A description linking pipette (1) one practical point eg draw liquid <u>up to line</u>/ use pipette filler/ rinse first / read at eye level (1) 	ignore burette etc for 1 st mpt if using measuring cylinder/ burette allow suitable practical point eg read at eye level/ add dropwise from burette near 25 cm ³ (1) ignore as 2 nd point: transfer liquid to flask / safety precautions	(2)

Question Number	Answer	Acceptable answers	Mark
(ii)	D 25.20 cm ³		(1)

Q72.

Question Number	Answer	Acceptable answers	Mark
(i)	 A description linking pipette (1) one practical point eg draw liquid <u>up to line</u>/ use pipette filler/ rinse first / read at eye level (1) 	ignore burette etc for 1 st mpt if using measuring cylinder/ burette allow suitable practical point eg read at eye level/ add dropwise from burette near 25 cm ³ (1) ignore as 2 nd point: transfer liquid to flask / safety precautions	(2)

Question Number	Answer	Acceptable answers	Mark
(ii)	D 25.20 cm ³		(1)

Q73.

Question Number	Answer	Mark
	An explanation that combines identification - application of knowledge (2 marks) and reasoning/justification - application of understanding (2 marks)	
	 hydrochloric acid is (almost) fully dissociated into ions (1) ethanoic acid is only slightly dissociated into ions (1) but the concentration of acid in the hydrochloric acid is lower (1) 	
	 so the concentration of hydrogen ions in the hydrochloric acid is lower (1) 	(4)

Q74.

Question Number	Answer	Mark
	 An explanation that combines identification via a judgment (1 mark) to reach a conclusion via justification/reasoning (1 mark) solution is alkaline (1) excess hydroxide ions are present / sodium and hydroxide ions in solution / sodium hydroxide solution formed (1) 	
		(2)

Q75.

Question Number	Answer	Mark
	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark):	
	 sodium and chloride ions present (1) these ions can move (in solution) (1) 	(2)

Question number	Answer	Additional guidance	Mark
	$\begin{array}{l} CaCO_3 + 2HCI \rightarrow CaCI_2 + H_2O \\ + CO_2 \\ \bullet \text{all formulae on correct side (2)} \end{array}$	Allow 2/4 formulae (1)	
	balancing (1)	Allow 3/4 formulae (1)	(3)

Q77.

Question number	Answer	Mark
	$ZnO + 2HNO_3 \rightarrow Zn(NO_3)_2 + 2H_2O$ • zinc nitrate formula (1)	
	 full, balanced equation (1) 	(2)

Q78.

Question number	Answer	Mark
	$Cu^{2+} + 2e^{-} \rightarrow Cu$	
	 all species (1) balancing (1) 	(2)

Q79.

Question number	Answer	Additional guidance	Mark
	Zn ²⁺ + 2e ⁽⁻⁾ → Zn (2)	if not fully correct, allow 1 for Zn^{2+} + (any number) $e^{(-)} \rightarrow$ (anything) allow ZN, zn allow multiples reverse reaction scores (0) ignore state symbols $Zn^{2+} \rightarrow Zn - 2e^{(-)}(0)$	(2)

Q80.

Question number	Answer	Additional guidance	Mark
	Zn ²⁺ + 2e ^(.) → Zn (2)	if not fully correct, allow 1 for Zn ²⁺ + (any number) e ⁽⁻⁾ → (anything) allow ZN, zn allow multiples reverse reaction scores (0)	(2)
		ignore state symbols $Zn^{2+} \rightarrow Zn - 2e^{(-)}(0)$	

Q81.

Question number	Answer	Additional guidance	Mark
	$MgO + 2H^+ \rightarrow Mg^{2+} + H_2O$	allow two marks for $O^{2^-} + 2H^+ \rightarrow H_2O$	(3)
	LHS (1)		
	RHS (1)		
	balancing of correct formulae (1)		

Q82.

Question number	Answer	Additional guidance	Mark
	$MgO + 2H^+ \rightarrow Mg^{2+} + H_2O$	allow two marks for $O^{2^-} + 2H^+ \rightarrow H_2O$	(3)
	LHS (1) RHS (1)		
	balancing of correct formulae (1)		

Q83.

Question Number	Answer	Mark
	$H^+ + OH^- \rightarrow H_2O_{(2)}$	
	left hand side (1) right hand side (1)	
	na se anterior a servicio en este a constructivo en este en este en este en este en este este	(2)

Name: _____

Paper 1 Core Practical 2022 Exam

Date:

Time:

Total marks available:

Total marks achieved: _____

Mark Scheme

Q1.

Answer	Acceptable answers	Mark
yellow / orange /red (1)	Combinations of yellow/orange/red	(1)
	pink	(1)

Q2.

Answer	Acceptable	Mark
	answers	
yellow / orange /red (1)	Combinations of yellow/orange/red pink	(1)

Q3.

Question Number	Answer	Mark
(i)	hydrochloric acid	
7		(1)
Question Number	Answer	Mark
(ii)	C pink-red	
		(1)

Q4.

Question Number	Answer	Mark
	Any two linked explanations	(4)
	Any two suitable precautions to make use of pipette or burette as accurate as possible or to carry out the titration as accurate as possible (1) linked explanation (1)	AO 1 2
	e.g.	
	read bottom of the meniscus on the burette/pipette scale / read burette/pipette at eye-level (1) to obtain accurate volume of sodium hydroxide solution / sulfuric acid added (1)	
	add {solution from burette / alkali} one drop at a time near end point (1) to identify exactly when colour change of indicator takes place (1)	
	use a white tile (1) to make it easier to see exactly when colour change of indicator takes place (1)	
	make sure no air bubbles in burette or pipette when measuring volumes (1) so exact volumes are recorded (1)	
	continually swirl flask (1) to ensure complete mixing of acid with alkali (1)	
	wash inside of conical flask with a little deionised/distilled water (1) to wash reactants into reaction mixture (1)	
	wash burette / pipette with appropriate solution before titration (1) to ensure burette / pipette is not contaminated (1)	
	do not award marks for concordancy / reliability / changes of indicator	

Q5.

Question number	Answer	Mark
(a)	 any one precaution from: wear gloves to prevent contact with skin/safety (1) spectacles to prevent contact with eyes (1) 	(1)

Question number	Answer	Additional guidance	Mark
(b)	$\frac{1000 \text{ cm}^3 \text{ contain } \frac{4.3 \times 1000}{250} (1)}{1 \text{ dm}^3 \text{ contains } 17.1 \text{ (g dm}^{-3}) (1)}$	Award full marks for correct numerical answer without working.	(2)
Question number	Answer	Additional guidance	Mark
(c)	$\begin{array}{l} 2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O\\ \bullet correct \ formulae \ (1)\\ \bullet balancing \ (1) \end{array}$	Do not award 2 if incorrect balancing added.	(2)
Question number	Answer		Mark
(d)	 {titration 1/27 cm³} should not readings {not precise/not accurates {titration 4/25.80 cm³} should of used (25.80 cm³) not concort 	rate/not read to 2 d.p.} (1) not be used because volume	(2)

Q6.

Question number	Answer	Additional guidance	Mark
(i)	ACID use measuring cylinder / pipette / burette (1) BASE balance / scales / weigh out amount (1)	must name apparatus ignore weigh the liquid allow use portion of known mass / use measured amount in g / specific mass given [from 0.1 to 10g] allow weight for mass	(2)
(ii)	START colourless END pink / magenta	both START and END required for mark ignore clear	(1)
(iii)	 An explanation linking {hydrogen ions/ H⁺} {reacted / neutralised} (1) {concentration falls/ fewer} H⁺ / {concentration rises/ more} OH⁻ (1) 	allow H ⁺ + OH ⁻ H ₂ O (1) for MP1	(2)

Q7.

Question number	Answer	Additional guidance	Mark
(i)	ACID use measuring cylinder / pipette / burette (1) BASE balance / scales / weigh out amount (1)	must name apparatus ignore weigh the liquid allow use portion of known mass / use measured amount in g / specific mass given [from 0.1 to 10g] allow weight for mass	(2)
Question number	Answer	Additional guidance	Mark
(ii)	START colourless END pink / magenta	ignore clear	(1)
Question number	Answer	Additional guidance	Mark
(iii)	 An explanation linking {hydrogen ions/ H⁺} {reacted / neutralised} (1) {concentration falls/ fewer} H⁺ / {concentration rises/ more} OH⁻ (allow H ⁺ + OH ⁻ \longrightarrow H ₂ O for MP1 (1)	(2)

Q8.

Question number	Answer	Additional guidance	Mark
(i)	 An explanation linking stainless steel resistant to {corrosion/ rusting/ oxidation} / corrosion rate slower / does not react with {air/oxygen} and water neither rod would rust/ react (in a few days) / there would be no {rusting / reaction}/ no change would occur / it would take a long time for any result (1) 	Ignore iron corrodes but ALLOW iron corrodes faster than stainless steel / iron rusts but stainless steel does not (1)	(2)
(ii)	measuring cylinder accurate enough / accuracy of pipette not needed / no need to be (more) accurate / the volume of water is not critical	allow exact/ precise for accurate allow pipettes only used for accurate/ precise/ exact volumes	(1)
(iii)	 An explanation linking (A) the magnesium has {corroded/ reacted/ oxidised} / (B) {rusting / corrosion / oxidation} has occurred (1) because magnesium is more reactive than iron / (magnesium has reacted) instead of the iron (1) 	MP1 describes reaction that occurs MP2 reason – ignore 'sacrificial protection' etc.	(2)

Q9.

Question Number	Answer	Acceptable answers	Mark
(a)	$H_2 + Cl_2 \rightarrow 2HCl$ M1 correct formulae on LHS and RHS (1)	In M1 do not allow incorrect use of upper/lower case/subscripts but M2 can be awarded for correct balancing	(2)
2	M2 correctly balanced (1)	dependent on M1 being awarded (but note special case above) accept multiples	

Question Number	Answer	Acceptable answers	Mark
(b)	M1 shared pair of electrons between one H and one Cl (1)	Accept all permutations of dots and crosses for electrons If any indication of ionic bonding including charges 0/2 symbols not required ignore incorrect symbols eg C/CL	(2)
	M2 remaining outer electrons correct (1)	M2 dependent on M1 electrons do not need to be in pairs ignore inner shells electrons can be on/in ring or no ring	

Q10.

Question Number	Answer	Mark
	 An answer that combines knowledge (1 mark) and understanding (2 marks) to provide a logical description use of a pH (probe and) meter / suitable universal indicator paper (1) (after each addition of calcium oxide) stir (1) record pH after each addition (1) 	
	······	(3)

Q11.

Question Number	Answer	Additional guidance	Mark
	23.65 with or without working scores 2 OR		(2) AO 3 2a AO 3 2b
	<u>23.60+23.70 (</u> 1) 2 = 23.65 (1)	allow 1 mark for all 3 averaged (24.35)	

Q12.

Question Number	Answer	Mark
	from pink / red to orange / yellow	(1) AO 1 2

Q13.

Question number	Indicative content	Mark
*	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.	EXP (6)
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	
	A01 (3 marks) A02 (3 marks)	
	 pipette to measure out the ammonia solution (25 cm³) into a suitable container, e.g. conical flask add few drops of methyl orange indicator put flask on a white tile fill burette with sulfuric acid solution read level of liquid in burette add acid from the burette swirl flask gently / mix add drop-wise near end-point 	
	 until {indicator just changes colour} read level on burette repeat experiment until concordant results owtte mix the same volumes of sulfuric acid and ammonia solution (determined from the titration experiment) but leaving out the indicator/methyl orange pour solution into an evaporating dish heat the solution to point of crystallisation leave to cool filter off crystals 	
	leave to dry	

Level	Mark	Descriptor
	0	No awardable content
Level 1	1-2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

Level	Mark	Additional Guidance	General additional guidance – the decision within levels
			Eg - At each level, as well as content, the scientific coherency of what is stated backed up by planning detail will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance Describes at least two steps of any of the three stages in the preparation of the ammonium sulfate crystals	 <u>Possible candidate responses</u> add sulfuric acid using a burette to ammonium solution use a pipette to measure out the ammoni solution and fill a burette with sulfuric acid mix correct volumes of sulfuric acid and ammonia solution together without indicator heat the ammonium solution until crystals start to form
Level 2	3-4	Additional guidance Describes at least two of the three stages in some detail, at least three steps, OR all three stages but lacking detail	 Possible candidate responses use a pipette to measure out the ammonis solution into a conical flask add few drops of indicator, add acid from a burette to ammonia solution. Crystallise the ammonium sulfate solution. use a pipette to measure out the ammonis solution. Add sulfuric acid using a burette to ammonia solution. Mix correct volumes of sulfuric acid and ammonia solution together without indicator to produce ammonia to find amounts of acid and ammonia solution needed. Mix correct amounts of sulfuric acid and ammonia solution together without indicator. Crystallise the ammonia solution together without indicator. Crystallise the ammonia solution together without indicator.
Level 3	5-6	Additional guidance Describes all three stages in the preparation of the ammonium sulfate crystals in some detail to include without use of indicator (6 marks) OR two stages in detail to include repeating without indicator (5 marks)	 Possible candidate responses use a pipette to measure out the ammonis solution into a conical flask. Add a few drops of indicator. Add acid from a burette to ammonia solution, swirling flask, until indicator just changes colour. Mix correct volumes of sulfuric acid and ammonia solution together without indicator to produce ammonium sulfate solution. Heat the ammonium sulfate solution until crystals start to form. Leave to cool and filter off crystals. use a pipette to measure out the ammoni solution into a conical flask. Add a few drops of indicator. Place flask on white tile Fill a burette with sulfuric acid and read level on burette. Add acid to ammonia solution, swirling flask, until indicator just changes colour. Read level on burette. Us the results of titration, mixing the correct volumes of sulfuric acid and ammonia leaving out indicator.

Q14.

Question number	Indicative content		
	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.		
	The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and		
	relevant.		
	 AO1 (6 marks) rinse pipette with alkali and burette with acid 		
	 measure alkali using a pipette into suitable container e.g. flask/beaker and place flask on a white tile 		
	 add a few drops of indicator/suitable named indicator (eg methyl orange/phenolphthalein) 		
	 fill burette with acid and read volume of acid in burette 		
	 add acid from burette to the flask slowly swirling the flask until 		
	{indicator just changes colour/correct colour change for named		
	indicator (eg methyl orange yellow to peach/orange, phenolphthalein pink to colourless)/solution is neutral}		
	 read volume of acid in burette at end of titration 		
	 repeat experiment until concordant results 		
	 mix the same volume of alkali with the volume of acid determined 		
	from the titration but do not add indicator		
	 pour solution into an evaporating basin then {heat solution/leave the 		
	water to evaporate} until pure salt crystals are left		
-	 dry crystals using absorbent paper 		

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) Presents a description which is not logically ordered and with significant gaps. (AO1)
Level 2	3-4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)
Level 3	5-6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Q15.

Question Number	Answer	Acceptable answers	Mark
(a)	improves resistance to corrosion	ignore rusting	(1)

Question Number	Answer	Acceptable answers	Mark
(b)	 An explanation to include anode dissolves / half equation given / atoms lose electrons /copper becomes ions/copper (atoms) oxidised (1) copper ions moving from anode to cathode (1) copper plated on cathode / half equation given / ions gain electrons/copper ions reduced/copper ions form atoms (1) (difference (0.2a) is impurities 	ignore references to mass increase of cathode and mass decrease of anode ignore 'impure copper (ions)' for the second marking point	
	 {difference/0.2g} is impurities (1) would expect same decrease in mass (as increase) (1) 	it eaten away/ impurities/sludge fallen to bottom of container /under anode (1) (there needs to be a reference to the difference in electrode masses for this point)	(3)

Question Number	Answer	Acceptable answers	Mark
(c)	$20^{2^{-}} \rightarrow 0_2 + 4e^{(-)}$ (2)	Unbalanced equation (1)	2.5
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2)

Questie		Indicative Content	Mark
QWC	* (d)	A description including some of the following points • sodium chloride is melted and ions are free to move at cathode • {sodium / positive} ions move to cathode • (sodium) metal forms at cathode • sodium ions gain electrons • to form atoms • this is reduction • Na ⁺ + e ⁻ \rightarrow Na at anode • {chloride / negative} ions move to anode • (chlorine) gas forms at anode • chloride ions lose electrons • to form atoms • this is oxidation • two chlorine atoms combine to form a chlorine molecule / share electrons • Cl ⁻ \rightarrow Cl + e ⁻ / 2Cl ⁻ \rightarrow Cl ₂ + 2e ⁻ • 2 Cl \rightarrow Cl ₂	(6)
Level	0	No rewardable content	
1	1 - 2	 a limited description e.g. gives at least one relevant description or explanation the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy 	
2	3 - 4	 a simple description e.g. for anode or cathode gives at least three descriptions or relevant explanations the answer communicates ideas showing some evidence of clan and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuration 	
3			es a

Q16.

Question Number	Answer	Acceptable answers	Mark
(a)	improves resistance to corrosion	ignore rusting	(1)

Question Number	Answer	Acceptable answers	Mark
(b)	 An explanation to include anode dissolves / half equation given / atoms lose electrons /copper becomes ions/copper (atoms) oxidised (1) copper ions moving from anode to cathode (1) copper plated on cathode / half equation given / ions gain electrons/copper ions reduced/copper ions form atoms (1) (difference (0.2a) is impurities 	ignore references to mass increase of cathode and mass decrease of anode ignore 'impure copper (ions)' for the second marking point	
	 {difference/0.2g} is impurities (1) would expect same decrease in mass (as increase) (1) 	it eaten away/ impurities/sludge fallen to bottom of container /under anode (1) (there needs to be a reference to the difference in electrode masses for this point)	(3)

Question Number	Answer	Acceptable answers	Mark
(c)	$20^{2^{-}} \rightarrow 0_2 + 4e^{(-)}$ (2)	Unbalanced equation (1)	2.5
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2)

Questic		Indicative Content	Mark
QWC	* (d)	A description including some of the following points • sodium chloride is melted and ions are free to move at cathode • {sodium / positive} ions move to cathode • (sodium) metal forms at cathode • sodium ions gain electrons • to form atoms • this is reduction • Na ⁺ + e [*] \rightarrow Na at anode • {chloride / negative} ions move to anode • (chlorine) gas forms at anode • chloride ions lose electrons • to form atoms • this is oxidation • two chlorine atoms combine to form a chlorine molecule / share electrons • Cl ⁻ \rightarrow Cl + e [*] / 2Cl ⁻ \rightarrow Cl ₂ + 2e [*] • 2 Cl \rightarrow Cl ₂	(6)
Level	0	No rewardable content	
1	1 - 2	 a limited description e.g. gives at least one relevant description or explanation the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy 	
2	3 - 4	 a simple description e.g. for anode or cathode gives at least three descriptions or relevant explanations the answer communicates ideas showing some evidence of clar and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accurate 	
3	5 - 6	 a detailed description e.g. for both anode and cathode give total of at least five descriptions or relevant explanations the answer communicates ideas clearly and coherently us range of scientific terminology accurately spelling, punctuation and grammar are used with few error 	es a

Q17.

	Answer	Acceptable	Mark
		answers	
(a)	C oxidised		(1)
(b)	D preservative		(1)
(c)	yellow / orange /red	Combinations of yellow/orange/red	
		pink	(1)

(d) (e)	$\begin{array}{l} (CH_3COOH +) \text{ NaOH} \\ (1) (\rightarrow CH_3COONa + \\) H_2O (1) \\ \text{hydrogen} \end{array}$	NaHO ignore attempts to balance H ₂ ignore H	(2)
(f)(i)	ethanoic acid + ethanol \rightarrow ethyl ethanoate + water (2)	correct spellings only left hand side (1) right hand side (1)	(2)
(f)(ii)	An explanation linking use (1) property (1) eg perfumes /cosmetics (1) pleasant smelling (1) other uses include flavourings / solvents	property dependent on use ignore 'sweet smelling' use – nail varnish remover property – acts as solvent for polyester: use – (polyester) to make clothing property – can be made into fibres	(2)

Q18.

	Answer	Acceptable answers	Mark
(a)	C oxidised		(1)
(b)	D preservative		(1)
(c)	yellow / orange /red (1)	Combinations of yellow/orange/red pink	(1)
(d)	(CH ₃ COOH +) NaOH (1) (\rightarrow CH ₃ COONa +) H ₂ O (1)	NaHO ignore attempts to balance	(2)
(e)	hydrogen	H ₂ ignore H	(1)
(f)(i)	ethanoic acid + ethanol \rightarrow ethyl ethanoate + water (2)	correct spellings only left hand side (1) right hand side (1)	(2)
(f)(ii)	An explanation linking use (1) property (1) eg perfumes /cosmetics (1) pleasant smelling (1) other uses include flavourings / solvents	property dependent on use ignore 'sweet smelling' use – nail varnish remover property – acts as solvent for polyester: use – (polyester) to make clothing property – can be made into fibres	(2)

Q19.

Question number	Answer	Additional guidance	Mark
(i)	25 ÷ 1000 × 0.1 = 0.0025 (1) 35 ÷ 1000 × 0.075 = 0.002625 (1) The acid is in excess (1)	Third mark only awarded as conclusion from calculated data.	(3)
Question number	Answer		Mark
(ii)	$\frac{36.20 + 36.30}{2} = 36.25 (1)$		(1)
Question number	Answer		Mark
(iii)	D		(1)

Q20.

Question Number	Answer	Mark
	An explanation that combines identification via a judgment (1 mark) to reach a conclusion via justification/reasoning (1 mark)	
	 solution is alkaline (1) excess hydroxide ions are present / sodium and hydroxide ions in solution / sodium hydroxide solution formed (1) 	2026
		(2)

Q21.

Question number	Answer	Additional guidance	Mark
(i)	pH meter/ pH probe	ignore data logger alone reject litmus / phenolphthalein / universal indicator solution / pH paper	(1)

Question number	Answer	Additional guidance	Mark
(ii)	 increases pH (1) until pH above 7 (1) and an explanation linking 	allow until pH = 7 ignore until neutral	(4)
	 REACTION {magnesium hydroxide / base / alkali / OH⁻ ions} {reacts with / neutralises} {the acid / the H⁺ ions} 		
	 IONS REMAINING so the hydrogen ions concentration is reduced / all hydrogen ions reacted / there is an excess of hydroxide ions (1) 	ignore there is an excess of magnesium hydroxide	

Q22.

Question number	Answer	Additional guidance	Mark
(i)	pH meter/ pH probe	ignore data logger alone reject litmus / phenolphthalein / universal indicator solution / pH paper	(1)

Question number	Answer	Additional guidance	Mark
(ii)	increases pH (1)		(4)
	• until pH above 7 (1)	allow until pH = 7 ignore until neutral	
	and an explanation linking		
	REACTION		
	 {magnesium hydroxide / base / alkali / OH⁻ ions} {reacts with / neutralises} {the acid / the H⁺ ions} 		
	IONS REMAINING	197 - 1975-19	
	 so the hydrogen ions concentration is reduced / all hydrogen ions reacted / there is an excess of hydroxide ions (1) 	ignore there is an excess of magnesium hydroxide	

Q23.

Question Number	Answer	Mark
(i)	hydrochloric acid	(1)
Question Number	Answer	Mark
(ii)	C pink-red	
		(1)

Q24.

		Indicative Content	Mark
QWC	*	A description / explanation including some of the following points anode • the anode decreases in mass / size • copper atoms	(6)

Γ	1	· · · · · · · · · · · · · · · · · · ·
		form ions by losing
		electrons
		copper ions pass into electrolyte
		oxidation
		takes place at the
		anode
		• (anode)
		sludge forms as
		impurities are
		left behind / fall to
		the bottom (under
		electrode)
		cathode
		• the cathode
		increases in mass / size
		copper ions
		gain electrons to
		form copper
		pure copper deposits on the
		cathode
		reduction
		takes place at the
		cathode electrolyte
		copper
		sulfate solution does
		not change in colour
		no change in
		concentration of
		copper ions
		copper ions in the electrolyte
		move toward the
		cathode
Level	0	No rewardable content
1	1 - 2	
		a limited description e.g. copper
		leaves the anode and deposits on the
		cathode.
		• the answer communicates ideas using simple language and uses limited
		scientific terminology
		 spelling, punctuation and grammar
		are used with limited accuracy
2	3 - 4	
		• a simple description e.g. copper
		leaves the anode and deposits on the
		cathode and impurities fall to the bottom of the beaker.
		• the answer communicates ideas
		the answer communicates ideas showing some evidence of clarity and

		organisation and uses scientific terminology appropriately • spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed description and explanation e.g. copper atoms from the anode lose electrons to form copper ions; copper ions are attracted to the cathode where they gain electrons to form pure copper. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Q25.

Question Number	Answer	
	An answer that combines knowledge (1 mark) and understanding (2 marks) to provide a logical description	
	 use of a pH (probe and) meter / suitable universal indicator paper (1) 	
 (after each addition of calcium oxide) stir (1) record pH after each addition (1) 		(3)

Q26.

Question Number	Answer	Acceptable answers	Mark
(a)	D aq I		(1)

Question Number	Answer	acceptable answers	Mark
(b)	$H^{+} + OH^{-} (1) \rightarrow H_2O(1)$	LHS (1) RHS (1) ignore state symbols, even if incorrect. allow inclusion of spectator ions, Na ⁺ and Cl ⁻ , if shown on both sides for one mark max	(2)

Question Number	Answer	Acceptable answers	Mark
(c)(i)	suitable acid-base indicator eg methyl orange, phenolphthalein	litmus reject universal indicator allow recognisable phonetic spelling	(1)

Question Number	Answer	Acceptable answers	Mark
(c)(ii)	correct colour change for suitable indicator in 4(c)(i):	for suitable	
	methyl orange : yellow \rightarrow orange/pink/red	litmus : blue \rightarrow red	
	phenolphthalein : magenta/pink \rightarrow colourless	ignore clear	(1)

Question Number	Answer	Acceptable answers	Mark
(d)	rel mass NaOH = 23.0 + 16.0 + 1.00 (1)	(= 40.0) (1)	
	concentration = 20.0 x 1 (1) formula mass	0.5 (mol dm ⁻³) without working (2)	(2)

(1)

Question Number	Answer	Acceptable answers	Mark
(e)	moles of NaOH = $\frac{25.0 \times 1.50}{1000}$ (1) (= 0.0375 moles) ratio 1 : 1 / moles NaOH = moles HCI (1)	0.0375 (1) – without working shown	
	conc of HCl = $\frac{0.0375 \times 1000}{30.0}$ (1) (= 1.25 (mol dm ⁻³)) OR 25.0 x 1.50 = 30.0 x conc acid (2)	conc of HCl = 1.25 (mol dm ⁻³)(3) without any working shown allow ecf	
	conc of HCl = $\frac{25.0 \times 1.50}{30.0}$ (1) (=1.25 (mol dm ⁻³))	conc = $\frac{30.0 \times 1.50}{25.0}$ = 1.80 (2) (mol dm ⁻³)	
	, , · <i>"</i>	allow 0.00125 /0.125 / 12.5 max 2	(3)

Q27.

(c)(iii)

carbon dioxide (1)

Question Number	Answer	Acceptable answers	Mar
(a)	C preservative		(1)
Question Number	Answer	Acceptable answers	Mar
(b)	M1 named indicator (1) M2 correct colour (1) M2 dependent on M1	universal Indicator – yellow/orange/red methyl orange – red phenolphthalein – colourless (red/blue) litmus - red	(2)
Question Number	Answer	Acceptable answers	Mar
(c) (i)	oxygen (1)	O ₂ reject O	(1)
Question Number	Answer	Acceptable answers	Mar
(c)(ii)	hydrogen (1)	H₂ reject H	(1)
Question Number	Answer	Acceptable answers	Mar

 $\rm CO_2$

Question Number	Answer	Acceptable answers	Mar
(d)	ethanoic acid + ethanol → ethyl ethanoate + water (2) left hand side (1) right hand side (1)	allow recognisable misspellings allow reactants and products in either order allow = for →	(2)
		allow correct formulae if formulae are used do not allow incorrect use of the subscripts / upper / lower case	

Q28.

Question Number	Answer	Acceptable answers	Mar
(a)	C preservative		(1)
Question Number	Answer	Acceptable answers	Mark
(b)	M1 named indicator (1) M2 correct colour (1) M2 dependent on M1	universal Indicator – yellow/orange/red methyl orange – red phenolphthalein – colourless (red/blue) litmus - red	(2)
Question Number	Answer	Acceptable answers	Mar
(c) (i)	oxygen (1)	O ₂ reject O	(1)
Question Number	Answer	Acceptable answers	Mar

Number			
(c)(ii)	hydrogen (1)	H₂ reject H	(1)
	\$1 29	\$2	

Question Number	Answer	Acceptable answers	Mar
(c)(iii)	carbon dioxide (1)	CO ₂	(1)

Question Number	Answer	Acceptable answers	Mar
(d)	ethanoic acid + ethanol → ethyl ethanoate + water (2) left hand side (1) right hand side (1)	allow recognisable misspellings allow reactants and products in either order allow = for → allow correct formulae if formulae are used do not allow incorrect use of the subscripts / upper / lower case	(2)

Q29.

	Answer	Acceptable	Mark
(-)(:)		answers	(4)
(a)(i)	D C ₄ H ₁₀		(1)
(a)(ii)		allow -CH ₃	
	one C=C in a molecule with three consecutive carbon atoms (1) rest of structure correct, ignore bond angles, conditional on first marking point(1)	do not allow two C=C in a molecule allow (1) for completely correct dot and cross diagram	(2)
(b)	C oxidised		(1)
(c)(i)	A description including two from • effervescenc e / fizzing / bubbles of gas (1) • solid disappears/clears /(colourless)solution	ignore cloudy/white ppt /'gas formed'/colour change /name of gas / changes to a liquid (solid/sodium carbonate/it) dissolves (1)	
	formed (1)		(2)
(c)(ii)	$\begin{array}{c} CH_{3}COOC_{2}H_{5}/CH_{3}C\\ OOCH_{2}CH_{3}/\\ CH_{3}CO_{2}C_{2}H_{5}/\\ CH_{3}CO_{2}CH_{2}CH_{3}/\\ C_{2}H_{5}O_{2}CCH_{3}/\\ CH_{3}CH_{2}OOCCH_{3}(1)\\ H_{2}O(1)\end{array}$	allow displayed formulae/ $C_4H_8O_2$ do not allow formulae ending in – COOH/- COO or any formula that does not show an ester do not allow H2O / H ² O /lower case h/HOH	(2)

maximum (1) if additional incorrect	
balancing ignore	
state symbols	

Q30.

	Answer	Acceptable	Mark
		answers	
(a)(i)	D C ₄ H ₁₀		(1)
(a)(ii)		allow - CH_3	
	one C=C in a molecule with three consecutive carbon atoms (1) rest of structure correct, ignore bond angles, conditional on first marking point(1)	do not allow two C=C in a molecule allow (1) for completely correct dot and cross diagram	(2)
(b)	C oxidised		(1)
(c)(i)	A description including two from • effervescenc e / fizzing / bubbles of gas (1) • solid disappears/clears /(colourless)solution formed (1)	ignore cloudy/white ppt /'gas formed'/colour change /name of gas / changes to a liquid (solid/sodium carbonate/it) dissolves (1)	(2)
(c)(ii)	$\begin{array}{c} CH_{3}COOC_{2}H_{5}/CH_{3}C\\ OOCH_{2}CH_{3}/\\ CH_{3}CO_{2}C_{2}H_{5}/\\ CH_{3}CO_{2}CH_{2}CH_{3}/\\ C_{2}H_{5}O_{2}CCH_{3}/\\ CH_{3}CH_{2}OOCCH_{3}(1)\\ H_{2}O(1) \end{array}$	allow displayed formulae/ C ₄ H ₈ O ₂ do not allow formulae ending in – COOH/- COO or any formula that does not show an ester do not allow H2O / H ² O /lower case h/HOH maximum (1) if additional incorrect balancing ignore state symbols	(2)

Question Number	Answer	Additional guidance	Mark
(i)	phenolphthalein /methyl orange	allow litmus / screened methyl orange / methyl red ignore litmus paper	(1) AO 2 2
		ignore pH meter/probe	
Question	Answer	Additional guidance	Mark

Question Number	Answer	Additional guidance	Mark
(ii)	it does not show sharp colour change at end point / not known	ignore goes through a series of gradual	(1)
	which colour change gives correct end point	colour changes	AO 3 1b
		allow does not have a definite end point	

Q32.

Question	Indicative Content		
Number			
QWC *	A description including some of the following points Stage 1 identifies pipette pipette / measuring cylinder to measure out the ammonia solution (25 cm ³) into a suitable container, e.g. conical flask Stage 2 add few drops of indicator / suitable named indicator put flask on a white tile identifies burette fill burette with sulfuric acid solution clamp burette / burette holder/stand read level of burette add acid from the burette swirl flask (gently) add drop-wise near end-point until {indicator just changes colour / correct colour change for chosen indicator} read level on burette	(6)	
	 repeat experiment until concordant results owtte Stage 3 mix the same volumes of sulfuric acid and ammonia solution (determined from the titration experiment) but leaving out the indicator Stage 4 pour into an evaporating dish {heat the solution / leave to evaporate} to dryness, until pure salt crystals formed to point of crystallisation/ concentrate solution leave to cool filter off crystals wash with water leave to dry 		

Level	0	No rewardable content
1	1 - 2	 a limited description e.g. limited description of one stage / add one solution to the other the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 a simple description e.g. one stage in detail / attempt to describe more than one stage the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed description e.g. add sulphuric acid to ammonia using indicator appropriately, good detail of equipment and of titration technique and some mention of producing crystals / detail description of producing crystals with some mention of titration the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Q33.

	Answer	Acceptable answers	Mark
(i)	A description including two from • effervescenc e / fizzing / bubbles of gas (1) • solid disappears/clears /(colourless)solution formed (1)	ignore cloudy/white ppt /'gas formed'/colour change /name of gas / changes to a liquid (solid/sodium carbonate/it) dissolves (1)	(2)
(ii)	CH ₃ COOC ₂ H ₅ /CH ₃ C OOCH ₂ CH ₃ / CH ₃ CO ₂ C ₂ H ₅ / CH ₃ CO ₂ CH ₂ CH ₃ / C ₂ H ₅ O ₂ CCH ₃ / CH ₃ CH ₂ OOCCH ₃ (1) H ₂ O (1)	allow displayed formulae/ C ₄ H ₈ O ₂ do not allow formulae ending in – COOH/- COO or any formula that does not show an ester do not allow H2O / H ² O /lower case h/HOH maximum (1) if additional incorrect balancing ignore state symbols	(2)

Q34.

	Answer	Acceptable answers	Mark
(i)	A description including two from • effervescenc e / fizzing / bubbles of gas (1) • solid disappears/clears /(colourless)solution formed (1)	ignore cloudy/white ppt /'gas formed'/colour change /name of gas / changes to a liquid (solid/sodium carbonate/it) dissolves (1)	(2)
(ii)	CH ₃ COOC ₂ H ₅ /CH ₃ C OOCH ₂ CH ₃ / CH ₃ CO ₂ C ₂ H ₅ / CH ₃ CO ₂ CH ₂ CH ₃ / C ₂ H ₅ O ₂ CCH ₃ / CH ₃ CH ₂ OOCCH ₃ (1) H ₂ O (1)	allow displayed formulae/ $C_4H_8O_2$ do not allow formulae ending in – COOH/- COO or any formula that does not show an ester do not allow H2O / H ² O /lower case h/HOH maximum (1) if additional incorrect balancing ignore state symbols	(2)

Q35.

Question number	Answer	Additional Guidance	Mark
(i)	use <u>pH meter</u> / <u>pH probe</u> (1)	allow <u>pH paper</u> / <u>Universal indicator</u> reject other named indicators / 'just 'indicator'	(1)

Question number	Answer	Mark
(ii)	D ten times higher	(1)
	A is incorrect because a pH difference in 1 reflects a 10 fold difference in [H ⁺]	
	B is incorrect because a pH difference in 1 reflects a 10 fold difference in [H ⁺]	
	C is incorrect because a lower pH means a higher [H ⁺]	

Q36.

Question number	Answer	Additional guidance	Mark
(i)	neutralisation OR exothermic	allow exothermic	(1)

Question number	Answer	Mark
(ii)	D ammonium nitrate is the only correct answer A is incorrect because the cation is ammonium and the anion is nitrate	(1)
	B is incorrect because the cation is ammonium C is incorrect because anion is nitrate	

Q37.

Question number	Answer	Additional Guidance	Mark
(i)	use <u>pH meter</u> / <u>pH probe</u> (1)	allow <u>pH paper</u> / <u>Universal indicator</u> reject other named indicators / `just `indicator'	(1)
Question number	Answer		Mark
(ii)	· 이상 이 방법 · · · · · · · · · · · · · · · · · ·	nce in 1 reflects a 10 fold difference in [H ⁺] nce in 1 reflects a 10 fold difference in [H ⁺] means a higher [H ⁺]	(1)

Q38.

Question number	Answer	Additional guidance	Mark
(i)	pH meter	allow universal indicator / pH paper ignore datalogger alone ignore pH scale / pH strip ignore indicator alone	(1)
Question number	Answer	Additional guidance	Mark
(ii)	7 / seven	allow pH7 / PH7	(1)

Q39.

Question number	Answer	Additional guidance	Mark
(i)	pH meter	allow universal indicator / pH paper ignore datalogger alone ignore pH scale / pH strip ignore indicator alone	1
Question number	Answer	Additional guidance	Mark
(ii)	7 / seven	allow pH7 / PH7	1

Q40.

Question Number	Answer	Mark
(i)	pipette	(1)
Question Number	Answer	Mark
(ii)	 name of indicator: suitable indicator e.g. methyl orange / phenolphthalein (1) colour change: correct colour change of indicator eg yellow to orange / pink (magenta) to colourless (1) 	(2)

Question Number	Answer	Additional guidance	Mark
(iii)	 swirl flask (1) add acid drop by drop near end point (1) 	allow any suitable practical technique that improves the accuracy	(2)

Q41.

	Indicative Content	Mark
QWC	A description including some of the following points titration experiment • rinse pipette with alkali and burette with acid • measure alkali using a pipette • into suitable container e.g. flask/beaker • add a few drops of indicator / suitable named indicator (eg methyl orange/phenolphthal ein) • flask on a white tile • fill burette with acid • read level/volume (of acid) in burette • add acid from burette to the flask slowly / swirl the flask • until indicator just changes colour/correct colour change for named indicator (eg methyl	
	orange yellow to peach/orange, phenolphthalein pink to	
	colourless)/solution	(6)

		volume of alkali with the volume of acid
		determined from the
		first experiment but do not add indicator
		(or add (activated)
		charcoal to remove
		indicator, then filter)
		pour solution into an evaporating
		basin
		heat
		solution/leave the
		water to evaporate
		until pure salt
		crystals are left
	0	No rowardable content
Level 1	0	No rewardable content
Level 1	0 1 - 2	
		No rewardable content a limited description of titration and/or salt preparation e.g. add hydrochloric
		a limited description of titration
		• a limited description of titration and/or salt preparation e.g. add hydrochloric
		 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas
		 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited
		 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology
		 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar
		 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator,
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change.
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change. the answer communicates ideas
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change. the answer communicates ideas showing some evidence of clarity and
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change. the answer communicates ideas
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology
1	1 - 2	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar
2	1 - 2 3 - 4	 a limited description of titration and/or salt preparation e.g. add hydrochloric acid to sodium hydroxide solution in a flask, then evaporate the water from solution. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy a simple description of titration and/or salt preparation e.g. pipette sodium hydroxide solution into flask, add indicator, place hydrochloric acid in burette, add acid to alkali until colour change. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar

sodium hydroxide solution into flask, add indicator, hydrochloric acid in burette, add acid to alkali until colour change, repeat until
0 · 1
concordant results, evaporate water.
 the answer communicates ideas
clearly and coherently uses a range of
scientific terminology accurately
spelling, punctuation and grammar
are used with few errors

Q42.

Answer	Acceptable answers	Mark
Any one from • no sharp/clear/distinct change in colour • gradual colour change • there are too many different colours	ignore not as accurate/reliable allow too difficult to see when it is neutral/reaction is complete ignore speed of colour change	(1)

Q43.

Question Number	Answer	Additional guidance	Mark
(i)	 A description including any two from : use a pipette filler (1) wash pipette with sodium hydroxide solution (1) draw the liquid up so (the bottom of the meniscus) touches the line (1) 		(2) AO 1 2

Question Number	Answer	Additional guidance	Mark
(ii)	An explanation linking any two from :	ignore to avoid contamination	(2)
	 to remove water from the burette (1) because this would dilute the original acid (1) this will give an inaccurate result / ORA (1) 	ignore to kill bacteria	AO 1 2

Q44.

Question Number	Answer	Acceptable answers	Mark
(i)	 A description linking pipette (1) one practical point eg draw liquid <u>up to line</u>/ use pipette filler/ rinse first / read at eye level (1) 	ignore burette etc for 1 st mpt if using measuring cylinder/ burette allow suitable practical point eg read at eye level/ add dropwise from burette near 25 cm ³ (1) ignore as 2 nd point: transfer liquid to flask / safety precautions	(2)

Question Number	Answer	Acceptable answers	Mark
(ii)	D 25.20 cm ³		(1)

Q45.

	Answer	Acceptable answers	Mark
(a)	A neutralisation		(1)
(b)	Any one from • no sharp/clear/distinct change in colour • gradual colour change • there are too	ignore not as accurate/reliable allow too difficult to see when it is neutral/reaction is complete ignore speed of colour	(1)

many different colours	change		
------------------------	--------	--	--

	Answer	Acceptable answers	Mark
(d)(i)	$\frac{22.6 + 22.8}{2}$ (1) (= 22.7)		(1)
(d)(ii)	$\begin{array}{l} \mbox{marks are for the} \\ \mbox{working} \\ \mbox{no. moles HCl} = \frac{23.2 \times 0.1}{1000} (1) \\ \hline 1000 \\ (= 2.32 \times 10^{-3}) \\ \mbox{no. moles NaOH} = \\ \mbox{no. moles AOH} = \\ \mbox{no. moles NaOH} = \\ no. moles NaO$	0.0928/0.093 with or without working (3) 0.09 with no working (2) common incorrect answers with working 0.108/0.1077 (2) – used 1:1 ratio but 25x0.1/23.2 0.928 (2) – used 1:1 ratio but missed out 0.1	(3)

Q46.

 An explanation that combines identification via a judgment (1 mark) to reach a conclusion via justification/reasoning (1 mark) solution is alkaline (1) excess hydroxide ions are present / sodium and hydroxide ions in solution / sodium hydroxide solution formed (1) 	Question Number	Answer	Mark
 excess hydroxide ions are present / sodium and hydroxide 		(1 mark) to reach a conclusion via justification/reasoning	
		그는 이것은 이렇게 잘 하는 것이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있다.	(2)

Q47.

Question number	Answer	Additional guidance	Mark
(i)	K, L, J, N, M		(1)

Question number	Answer	Additional guidance	Mark
(ii)	(volumetric) pipette	allow burette reject dropping pipette	(1)
		ignore balance	

Q48.

Question number	Answer	Additional guidance	Mark
(i)	K, L, J, N, M		(1)
Question number	Answer	Additional guidance	Mark
(ii)	(volumetric) pipette	allow burette reject dropping pipette ignore balance	(1)

Name: _____

Topic 5 Chemistry 2022 Exam

Date:

Time:

Total marks available:

Total marks achieved: _____

Mark Scheme

Q1.

Question Number	Answer	Mark
	Any two linked explanations	(4)
	Any two suitable precautions to make use of pipette or burette as accurate as possible or to carry out the titration as accurate as possible (1) linked explanation (1)	AO 1 2
	e.g.	
	read bottom of the meniscus on the burette/pipette scale / read burette/pipette at eye-level (1) to obtain accurate volume of sodium hydroxide solution / sulfuric acid added (1)	
	add {solution from burette / alkali} one drop at a time near end point (1) to identify exactly when colour change of indicator takes place (1)	
	use a white tile (1) to make it easier to see exactly when colour change of indicator takes place (1)	
	make sure no air bubbles in burette or pipette when measuring volumes (1) so exact volumes are recorded (1)	
	continually swirl flask (1) to ensure complete mixing of acid with alkali (1)	
	wash inside of conical flask with a little deionised/distilled water (1) to wash reactants into reaction mixture (1)	
	wash burette / pipette with appropriate solution before titration (1) to ensure burette / pipette is not contaminated (1)	
	do not award marks for concordancy / reliability / changes of indicator	

Question Number	Indicative content	Mark
*	An explanation that combines identification via a judgment (3 marks) to reach a conclusion via justification/reasoning (3 marks)	
	 raw materials: fermentation uses plants which can be regrown / hydration uses crude oil which is finite resource temperature: fermentation low therefore low energy cost / hydration high therefore high energy cost atom economy: fermentation lower / hydration of ethene 100% production rate: fermentation slow / hydration fast purification: fermentation needs energy for fractional distillation / hydration product pure carbon dioxide produced by fermentation could be useful product high pressure needed for hydration means more expensive plant 	
		(6)

Level	Mark	Descriptor	
5	0	No rewardable material.	
Level 1	1-2	 Deconstructs scientific information but understanding and connections are flawed. An unbalanced or incomplete argument that provides limited synthesis of understanding. Judgements are supported by limited evidence. (AO3) 	
Level 2	3-4	 Deconstructs scientific information and provides some logical connections between scientific concepts. An imbalanced argument that synthesises mostly relevant understanding, but not entirely coherently. Judgements are supported by evidence occasionally. (AO3) 	
Level 3	5-6	 Deconstructs scientific information and provide logical connections between scientific concepts throughout. A balanced, well-developed argument that synthesises relevant understanding coherently. Judgements are supported by evidence throughout. (AO3) 	

Question number	Answer	Additional guidance	Mark
(i)	 An explanation linking stainless steel resistant to {corrosion/ rusting/ oxidation} / corrosion rate slower / does not react with {air/oxygen} and water neither rod would rust/ react (in a few days) / there would be no {rusting / reaction}/ no change would occur / it would take a long time for any result (1) 	Ignore iron corrodes but ALLOW iron corrodes faster than stainless steel / iron rusts but stainless steel does not (1)	(2)
(ii)	measuring cylinder accurate enough / accuracy of pipette not needed / no need to be (more) accurate / the volume of water is not critical	allow exact/ precise for accurate allow pipettes only used for accurate/ precise/ exact volumes	(1)
(iii)	 An explanation linking (A) the magnesium has {corroded/ reacted/ oxidised} / (B) {rusting / corrosion / oxidation} has occurred (1) because magnesium is more reactive than iron / (magnesium has reacted) instead of the iron (1) 	MP1 describes reaction that occurs MP2 reason – ignore 'sacrificial protection' etc.	(2)

Q4.

Question Number	Answer	Additional guidance	Mark
	final answer of 90 with or without working (4)	allow ECF throughout	(4)
			AO 2 1
	OR	458 seen (1)	
	total mass : 2x223 + 12 / (2 x 207) + 44 (= 458) (1)		
		90.39 / 90.4 for 3 marks	
	mass of useful products : 2 x 207 = 414	110.628 / 111 (2) 110 (3)	
	414 (1) x 100 (1) (= 90.39)		
	458	correct rounding of an answer	
	= 90 (1)	with working to 2 sig fig (1)	

Q5.

Question number	Answer	Additional guidance	Mark
	 mass values in correct places (1) multiplication by 100 (1) correct final answer to two significant figures (1) 	$\frac{2.53}{2.85} \times 100 = 88.8\%$ 89% (to 2 s.f.) Award full marks for correct numerical answer without working.	(3)

Q6.

Question number	Answer	Additional guidance	Mark
	8.000- 6.213 = (1.787) (g)	allow 1.8, 1.79	(1)

Q7.

Question number	Answer	Additional guidance	Mark
	Formula mass ammonium chloride = $14.0 + 4.00 + 35.5 = 53.5$ moles of ammonium chloride = $\frac{10.0}{52.5} = 0.187$ (1)	Award full marks for correct numerical answer without working.	
	volume ammonia = 0.187×24 = 4.49 dm^3 (1)		
	 or 2 × 53.5 = 107 g ammonium chloride produces 2 × 24 = 48 dm³ ammonia (1) 10.0 g ammonium chloride produces 10.0 		
	$\frac{10.0}{2 \times 53.5} \times 2 \times 24 = 4.49 \text{dm}^3$ ammonia (1)		(2)

Q8.

Question number	Answer	Additional guidance	Mark
	2000 dm ³ with or without working scores 4 moles NO = 1000/30 (1) (= 33.3) moles O ₂ = moles NO /2 (1) (= 16.666) volume O ₂ = moles x 24 = 16.666 x 24 (1) (=400 dm ³) volume air = volume O ₂ x 100/20 (1) (=2000 dm ³) OR	ecf on all stages	(4)
	2 mol NO = 60 g (1) 60 g NO : 24 dm ³ oxygen (1) 1000 g NO reacts with 24 x 1000/60 (1) (=400 dm ³) volume air = volume $O_2 x 100/20$ (1) (=2000 dm ³)	3 marks all working up to 400 x 20/100 = 80	

Question number	Answer	Additional guidance	Mark
(i)	97.3(%) with or without working scores 2 <u>5.450</u> (1) x 100 5.600 = 97.3214	<pre>if fraction inverted then x 100 = 102.75 (3 or more sig fig) allow (1) for 0.973 allow (1) MP2 only for correctly x 100 some figure derived from the data given allow any sig fig except 1</pre>	(2)
	= 97.3(%) (1)		

Question number	Answer	Mark
(ii)	A some solid was lost from the crucible is the only correct answer	(1)
	B is incorrect because this would increase mass	
	C is incorrect because this would not alter mass	
	D is incorrect because this would increase mass	

Q10.

Question number	Answer	Additional guidance	Mark
(i)	100 with or without working scores 2 40 + 12 + 3 x 16 (1) =100 (1)	ignore any units ecf for MP2 if using 12, 16 and 40, using addition and multiplication only	(2)
(ii)	56% without working scores 0 $\frac{56}{100}$ (1) (x 100) = 56 (%) (1)	56/answer to 4(d)(i) (1) x 100 (1) MP2 only for correctly x 100 some figure derived from the data given 100% scores 0	(2)

Q11.

Question Number	Answer	Mark
	 17.73/24.60 (0.7207) (1) 	
	• (17.73/24.60) x 100 (72.07) (1)	
	• = 72.1% (1)	
	184	(3)

Q12.

Question Number	Answer	Mark	
	amount of sodium hydroxide = $\frac{25.00 \times 0.50}{1000}$ (1)		
	amount of hydrochloric acid = amount of sodium hydroxide (1) = $\frac{25.00 \times 0.50}{25.00 \times 0.50}$		
	1000 concentration of hydrochloric acid = <u>25.00 x 0.50 x 1000</u> (1) 1000 x 22.85 = 0.547 (mol dm ⁻³) (3 sf) (1)		
	OR		
$25.00 \times 0.50 = \text{conc HCl} \times 22.85 (2)$ $\text{conc HCl} = \frac{25.00 \times 0.50}{22.85} (1)$			
	= 0.547 (mol dm ⁻³) (3 sf) (1)	(4)	

Q13.

Question Number	Answer	Mark
	relative formula mass KOH = 39+16+1 (=56) (1) concentration = 0.625 x 56 (= 35 g dm ⁻³) (1)	
		(2)

Q14.

Question Number	Answer		Mark	
	180 g glucose	produces	2 x 24 dm ³ carbon dioxide (1)	
	75 kg glucose (1)	produces	2 x 24 x <u>75000</u> dm³ carbon dioxide	
	(1997))))		180	
			= 20000 dm ³ (1)	
				(3)

Q15.

Question Number	Answer	Mark
	0.097 (mol dm ⁻³) with or without working (4)	(4)
	$\begin{array}{l} \text{OR} \\ \text{moles of NaOH} = \underbrace{24.25 \times 0.200}_{1000} (1) (= 4.85 \times 10^{-3}) \\ 1000 \\ \text{from reaction equation moles acid} = \frac{1}{2} \times \text{moles alkali} \\ = \frac{1}{2} \times 4.85 \times 10^{-3} (1) \\ (= 2.425 \times 10^{-3}) \\ \text{concentration of H}_2\text{SO}_4 = \underbrace{2.425 \times 10^{-3} \times 1000}_{25.00} (1) \\ = 0.097 (1) \text{ (mol dm}^{-3}) \end{array}$	AO 3 2a AO 3 2b
	$ \begin{array}{l} & \text{OR} \\ & \ensuremath{\mathcal{V}_2}\left(1\right) \ge 24.25 \ge 0.200 \ = \ 25.00 \ge \text{conc} \ \text{H}_2\text{SO}_4\left(1\right) \\ & \text{conc} \ \text{H}_2\text{SO}_4 \ = \ensuremath{\mathcal{V}_2} \ge \frac{24.25 \ge 0.200}{25.00} \left(1\right) \\ & \ensuremath{\mathbb{2}5.00} \\ & = \ 0.097(1) \ (\text{mol} \ \text{dm}^{-3}) \\ & \text{on answer line} \ 0.388 \ / \ 0.39 \ (3) \ [\ \text{x2 instead of} \ \text{x}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

Question Number	Answer	Additional guidance	Mark
	final answer of 2 (kg) with or without working (3)	allow ECF throughout	(3)
	OR	31.25 x 64 (2) allow ECF	AO 2 1
	moles of $SO_2 = \frac{750}{24} (1) (= 24)$	allow any calculated mass / 1000 (1)	
	mass of SO ₂ = $\frac{750}{24} \times 64$ (1) (= 2000)	final answer 2000 (kg) (2)	
	mass of $SO_2 = \frac{2000}{1000} (1)$ (= 2 (kg))		

Q17.

Question Number	Answer	Additional guidance	Mark
	24.5 (g dm ⁻³) with or without working (2)		(2)
	OR concentration = 98 x 0.25 (1) = 24.5 (1) (g dm ⁻³)	allow 2.45 / 24500 (1)	AO 2 1

Q18.

Question Number	Answer	Additional guidance	Mark
	½ x 750 (1) = 375 (dm ³)	375 alone (1)	(1) AO 2 1

Q19.

Question Number	Answer	Mark
	from pink / red to orange / yellow	(1) AO 1 2

Q20.

Question Number	Answer	Mark
(i)	$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	(2) AO 3 1a
		AO 3 1b

Question Number	Answer	Additional guidance	Mark
(ii)	all <u>atoms</u> in the reactants are present in the product / only one product is formed	allow no atoms are wasted (in the reaction) / no waste products / nothing is wasted	(1) AO 1 1
		allow total mass of reactants = mass of useful products	
		allow complete calculation to show that atom economy is 100%	
		ignore equation is balanced / same number of atoms on both sides	

Q21.

 Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlines in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. equilibrium reached faster because of higher temperature in set A / equilibrium reached slower because of lower temperature in set B higher temperature means more frequent collisions because molecules have more energy / ORA for lower temperature in set B decrease in temperature increases equilibrium yield but system takes longer to reach equilibrium temperature chosen for optimum conditions yield lower as forward reaction is exothermic high temperature faster because of lower pressure in set B / equilibrium reached slower because of lower pressure in set B / equilibrium reached slower because of lower pressure in set A / equilibrium reached faster because of higher pressure in set A / equilibrium reached faster because of higher temperature in set B 	(6) AO 2 1 AO 3 1 AO 3 1
 catalyst increases rate of both forward and back reactions equilibrium position not affected so catalyst does not affect yield 	
	 knowledge and understanding of the material in relation to the qualities and skills outlines in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. equilibrium reached faster because of higher temperature in set A / equilibrium reached slower because of lower temperature in set B higher temperature means more frequent collisions because molecules have more energy / ORA for lower temperature in set B decrease in temperature increases equilibrium yield but system takes longer to reach equilibrium temperature chosen for optimum conditions yiel lower as forward reaction is exothermic high temperature favours back reaction which is endothermic equilibrium reached slower because of lower pressure in set B / equilibrium reached slower because of lower pressure in set A / equilibrium reached slower because of lower pressure in set A / equilibrium reached faster because of lower pressure in set A / equilibrium reached slower because of lower pressure in set A / equilibrium reached slower because of lower pressure in set A / equilibrium reached slower because of lower pressure in set A / equilibrium reached slower because of lower pressure in set A higher pressure causes molecules to be closer together so more frequent collisions / ORA for lower pressure in set A yield higher because products occupy smaller volume than reactants for set B catalyst in set B causes equilibrium to be reached faster catalyst in creases rate of both forward and back reactions

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	 Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	 Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

Q22.

Question number	Answer	Additional guidance	Mark
(i)	both are {soluble/will dissolve} (in water)		(1)
Question number	Answer	Additional guidance	Mark

NH ₃ + HNO ₃ → NH ₄ NO ₃	allow multiples	(2)
LHS (1) RHS (1)		
	LHS (1)	LHS (1)

Question number	Answer		Mark
(iii)	a similarity from :		(2)
	both use sulfuric acid (1)	ignore both produce ammonium sulfate	
		allow both use same reactants	
	both (are examples of) neutralisation (1)	allow both give out heat energy / exothermic (1)	
	and a difference from :		
	the industrial process is on a much larger scale than the laboratory process / ORA (1)	allow laboratory preparation is a batch process, industrial preparation is continuous process (1)	
	the industrial process involves more stages than the laboratory process / ORA (1)		
	ammonia is a gas in the industrial process but a solution in the laboratory process (1)		
	laboratory preparation uses titration and crystallisation (1)	ignore industrial is more dangerous	

Q23.

Question number	Answer	Additional guidance	Mark
(i)	25 ÷ 1000 × 0.1 = 0.0025 (1) 35 ÷ 1000 × 0.075 = 0.002625 (1) The acid is in excess (1)	Third mark only awarded as conclusion from calculated data.	(3)
Question number	Answer		Mark
(ii)	$\frac{36.20 + 36.30}{2} = 36.25 (1)$		(1)

Question number	Answer	Mark
(iii)	D	(1)

Q24.

Question Number	Indicative content
	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.
	 AO1 (6 marks) The effect of the temperature rise on the rate of attainment of equilibrium and on the equilibrium yield are considered by: higher temperature reaches equilibrium faster because molecules move faster therefore there are more frequent collisions because molecules have more energy therefore more collisions have required energy but yield will be lower because higher temperature favours endothermic reaction and so equilibrium shifts to left hand side which is decomposition of ammonia / ammonia reforms elements catalyst causes reaction to reach equilibrium faster / catalyst increases rates (of both forward and back reactions) lowers the activation energy (of both forward and back reactions) but does not affect yield equilibrium position not affected.

Level Mark		Descriptor	
3 3	0	No rewardable material.	
Level 1	1-2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) Presents an explanation with some structure and coherence. (AO1) 	
Level 2	3-4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) Presents an explanation that has a structure which is mostly clear, coherent and logical. (AO1) 	
Level 3	5-6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1) 	

Q25.

Question number	Answer	Additional guidance	Mark
(i)	 an explanation linking shift equilibrium to right / in forward direction (1) 	allow favours forward/endothermic reaction	(2)
	 increase yield of {product / hydrogen / carbon monoxide} (1) 	ignore references to decreasing amounts of reactants. marks are independent	

Question number	Answer	Additional guidance	Mark
(ii)	final answer of 2.4 with or without working (3)		(3)
	OR		
	$\frac{0.4}{16} = 0.025$ (1)		
	0.025 x 4 = 0.1 (1)		
	0.1 x 24 = 2.4 (1)		

Q26.

Question number	Answer	Mark
(i)	 An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (2 marks): rate increased/time to reach equilibrium reduced (1) because gas molecules closer/more concentrated (1) so increased collision rate/more frequent collisions(1) 	(3)
Question number	Answer	Mark
(ii)	A	(1)

Q27.

Question	Indicative content	Mark
number		
*	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlines in the generic mark scheme.	(6)
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 & AO2 (6 marks)	
	EXCESS AIR	
	increases oxygen concentration	
	 so excess air favours right hand side 	
	and gives higher yield	
	 excess air increases concentration of oxygen equilibrium reached faster 	
	PRESSURE	
	 9 molecules on left and 10 on right 	
	 so higher pressure favours left hand side and gives lower yield 	
	 higher pressure increases concentration of gases 	
	 more frequent collisions equilibrium reached faster 	
	TEMPERATURE	
	 heat energy given out in forward reaction 	
	 higher temperature favours reaction that takes in heat energy 	
	 so higher temperature favours left hand side hence lower yield 	
	molecules move faster at higher temperature more frequent collisions	
	 more frequent collisions therefore more reactions in given time 	
	equilibrium reached faster	
	equilibrium reached faster	

Level	Mark Descriptor	
	0	No awardable content
Level 1	1-2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

Level	Mark	Descriptor	Additional guidance
	0	No rewardable material.	Read whole answer and ignore all incorrect material/ discar any contradictory material then:
Level 1	1-2	Additional guidance One factor is discussed with a statement of effect on yield and/or rate (1) One factor is discussed with explanation of yield and/or rate (2) Two or three factors are discussed with statement of	Possible candidate responses A higher pressure gives a lower yield because there are more gas molecules on the right hand side. Factor and reason – 2 marks
Level 2	3-4	effect on yield and/or rate (2) <u>Additional guidance</u> One factor is fully discussed with explanation of yield and rate. (3)	Possible candidate responses A higher pressure gives a lower yield because there are more gas molecules on the right hand side. A higher temperature gives a lower yield because the forward reaction is exothermic.
		Two factors are discussed with explanation of yield and/or rate in one case and just statement of yield and/or rate in one case(3)	2 factors both with reasons – 4 marks
		Two factors are discussed with explanation of yield and/or rate in each case (4)	
		Three factors are discussed with statement of effect on yield and/or rate with explanation for at least one (4)	
Level 3	5–6	Additional guidance All three factors are discussed, with explanation of yield and/or rate in each case (6)	Possible candidate responses Excess air gives a higher yield. A higher pressure gives a higher rate because the gas molecules are closer and collide more frequently. A higher temperature gives a higher rate because more molecules have the activation energy.
		All three factors are discussed, with explanation of yield and/or rate in two cases (5)	3 factors, 2 have reasons, 1 statement (air) – 5 marks

Q28.

Question number	Answer	Additional guidance	Mark
(i)	 An explanation linking solution from titration contains an indicator (1) therefore second solution used with no indicator / indicator would contaminate salt (1) 	MP2 dependant on MP1 allow original mixture was contaminated by indicator so doesn't form a pure salt (2)	(2)

Question number	Answer	Additional guidance	Mark
(ii)	final answer of 120% with or without working (2)	12	(2)
	OR		
	$\frac{0.84}{0.70}$ (=1.2) (1)		
	0.84 x 100 (=120(%)) (1)	allow any fraction x100 (1)	

Question number	Answer	Additional guidance	Mark
(iii)	{the salt/solid/potassium chloride} was still wet/ not all of the water had been evaporated off		(1)

Question number	Answer	Additional guidance	Mark
(iv)	final answer of 80.5 with or without working (4) OR	allow ECF throughout	(4)
	total mass: 56 + 36.5 (=92.5) / 74.5 + 18 (=92.5) (1)	92.5 seen (1)	
	<u>74.5</u> (= 0.8054) (1) 92.5		
	<u>74.5</u> x 100 (=80.540) (1) 92.5		
	= 80.5 (1)	incorrect answer with working to 1 decimal place (1)	
		50.0/100.0 does not score MP4	

Q29.

Question Number	Answer	Acceptable answers	Mark
(i)	A 333 dm ³		(1)

Question Number	Answer	Acceptable answers	Mark
(ii)	 An explanation linking <u>all / three</u> gases present/ <u>nitrogen, hydrogen and</u> <u>ammonia</u> (1) ammonia decomposes/ ammonia turns back to reactants/ reaction goes both ways / reversible (1) 	reject ammonium ignore incomplete reaction assume that "both reactions" refer to forward and backward reaction allow <u>dynamic</u> equilibrium	(2)

Question Number	Answer	Acceptable answers	Mark
(iii)	An explanation linking • increased / higher {yield / amount of ammonia} (1)	mark independently ignore "high yield"	(2)
	 because fewer (gas) molecules/ moles on RHS/ 4 mole(cule)s on left and 2 on right/ decreased volume on RHS/equilibrium shifts to RHS/ equilibrium shifts in forward direction (1) 	reject answers referring to exothermic or endothermic ignore any references to rate	

Question Number	Answer	Acceptable answers	Mark
(iv)	 An explanation to include <u>rate</u> increased/ time to reach equilibrium reduced (1) because gas molecules closer / more concentrated (1) 	mark independently ignore any refs to equilibrium ignore 'time is faster'/ allow 'quicker'	(3)
	 so increased collision rate / more collisions in a given time / more frequent collisions(1) 	allow atoms/ particles instead of molecules; allow more molecules present (in same container) do not allow `more collisions'	

Question number	Answer	Mark
(i)	 D increases does not change A, B, C are incorrect because catalysts increase rate of attainment of equilibrium and do not change equilibrium yield 	(1)
Question number	Answer	Mark
(ii)	C the amounts of nitrogen, bydrogen and ammonia become	(1)

(11)	constant	(1)
	A , B , D are incorrect because when the reaction reaches equilibrium the amount of nitrogen, hydrogen and ammonia remain constant	

Question number	Answer	Additional guidance	Mark
(iii)	 an explanation linking equilibrium attained in a shorter period of time / rate of attainment of equilibrium {faster/ increases} (1) equilibrium yield increases (1) equilibrium shifts to the {right / forward / to products side} (1) decrease in number of molecules (1) 	allow moves to fewer molecules	(4)

Q31.

Question number	Answer	
	 volumes of solution too large for titration method (1) large volumes of liquid need to be heated and then allowed to crystallise (1) 	(2)

Question number	Answer	Mark
	 An explanation that combines identification - improvement of the experimental procedure (maximum 2 marks) and justification/reasoning, which must be linked to the improvement (maximum 2 marks): add excess sodium sulfate solution rather than a few drops (1) so more reaction occurs to form more lead sulfate (1) filter the reaction mixture rather than pour off the liquid(1) so none of the lead sulfate is lost on separation(1) wash the lead sulfate (1) so the impurities are removed (1) place the lead sulfate in an oven/warm place (1) so the lead sulfate is dry (1) 	(4)

Q33.

Question Number	Answer	Additional guidance	Mark
(i)	final answer of 65(%) with or without working (2)		(2)
	OR 7.67 (= 0.65) (1) 11.80 7.67×100 (=65(%)) (1)	allow any fraction x 100 (1)	AO 2 1
	11.80	153.84 scores 1	

Question Number	Answer	Additional guidance	Mark
(ii)	 any two from incomplete / reversible reactions competing/unwanted/side reactions practical losses during the 	ignore gases formed / impure substances / losses through incompetence / products not used up	(2) AO 1 1
	experiment / loss on transfer from one piece of equipment to another		

Question Number	Answer	Mark
	An answer that combines three of the following points of application of knowledge and understanding to provide a logical description	131200
	 add some ammonia solution/ hydrochloric acid (to a beaker/flask) (1) add an indicator (1) add the other reagent until the indicator just changes colour (1) repeat using same volumes but without indicator (to obtain pure solution) (1) 	
	E FLE EFLETIN XY	(3)

Q35.

Question Number	Answer		Acceptable answers	Mark
	$CaCl_2 = 40 + 35.5 + 35.5$ (1)	(=111)	0.2 scores 3	(3)
	THEN moles = 11.1 / 111 (1)	(= 0.1)	ecf: 11.1 / Mr	
	$conc = moles \times 1000/500$ (1)	(=0.2)		
	OR mass conc = 11.1 x 1000/500 (1)	(=22.2)	ecf: mass conc / 111	
	conc = <u>mass conc</u> /111 (1)	(= 0.2)		

Q36.

Question number	Answer	Mark
	equilibrium position/usefulness of by-products	(1)

Q37.

Question number	Answer	Additional guidance	Mark
(i) Haber process (1)		accept phonetically correct spellings e.g Harber	(1)

Question number	Answer	Mark
(ii)	rate increased / speeded up / quicker / faster (1)	(1)
(iii)	yield unchanged/ stays same / none (1)	(1)

Q38.

Question number	Answer	Additional guidance	Mark
(i)	neutralisation OR exothermic	allow exothermic	(1)

Question number	Answer	Mark
(ii)	D ammonium nitrate is the only correct answer	(1)
	${\bf A}$ is incorrect because the cation is ammonium and the anion is nitrate	
	B is incorrect because the cation is ammonium	
	C is incorrect because anion is nitrate	

Q39.

Question Number	Answer	Mark
	An explanation that combines identification - knowledge (1 mark) and reasoning/justification - understanding (2 marks)	
	 rate increased / time to reach equilibrium reduced (1) (because) gas molecules closer together (1) (so) increased collision rate / more frequent collisions (1) 	******
		(3)

Q40.

Question Number	Answer	Acceptable answers	Mark
(i)	 A description linking <u>pipette</u> (1) one practical point eg draw liquid <u>up to line</u>/ use pipette filler/ rinse first / read at eye level (1) 	ignore burette etc for 1 st mpt if using measuring cylinder/ burette allow suitable practical point eg read at eye level/ add dropwise from burette near 25 cm ³ (1) ignore as 2 nd point: transfer liquid to flask / safety precautions	(2)

Question Number	Answer	Acceptable answers	Mark
(ii)	D 25.20 cm ³		(1)

Q41.

Question Number	Answer	Mark
(i)	pipette	(1)

Question Number	Answer	Mark
(ii)	 name of indicator: suitable indicator e.g. methyl orange / phenolphthalein (1) colour change: correct colour change of indicator eg yellow to orange / pink (magenta) to colourless (1) 	(2)

Question Number	Answer	Additional guidance	Mark
(iii)	 swirl flask (1) add acid drop by drop near end point (1) 	allow any suitable practical technique that improves the accuracy	Cr. 11 460
	20 Artic		(2)

Q42.

Question Number	Answer	Mark
	B 750	(1)
	The only correct answer is B	AO 2 1
	A is not correct because 375.5 dm^3 is half the actual volume formed	
	<i>C</i> is not correct because 1125.5 dm ³ is one and a half times the actual volume formed	
	D is not correct because 1500 dm ³ is double the actual volume formed	

Q43.

Question number	Answer	Additional guidance	Mark
(i)	К, L, J, N, M		(1)

Question number	Answer	Additional guidance	Mark
(ii)	(volumetric) pipette	allow burette reject dropping pipette	(1)
		ignore balance	

Name: _____

Topic 4 Chemistry 2022 Exam

Date:

Time:

Total marks available:

Total marks achieved: _____

Mark Scheme

Q1.

Question Number	Answer	Additional guidance	Mark
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Al and H ₂ (1) balancing of correct species (1)	(2)
		allow multiples	AO 2 1

Q2.

Question Number	Answer	Additional guidance	Mark
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Al and H ₂ (1) balancing of correct species (1)	(2)
		allow multiples	AO 2 1

Q3.

Question number	Answer	Additional guidance	Mark
(i)	14(.2) with or without working scores 3 1kg = 1000g (1) <u>142</u> (1) 1000 x 100% =14(.2) (1)	If the percentage of non nickel compounds is calculated to give 85.8%/86% score 2 $\frac{142}{1000}$ or 0.142 will score MP1 and MP2 $\frac{142 \times 100}{1} = 14200 \text{ scores (1)}$	(3)
(ii)	decontaminates ground / conserves {nickel / nickel ores / ores} / allows use of low-grade ore / specified environmental reason: e.g. less noise due to mining / carbon neutral / less carbon dioxide	Ignore any reference to cost/ better for environment etc. / time / energy	(1)

Q4.

Question number	Answer	Additional guidance	Mark
(i)	14(.2) with or without working scores 3 1kg = 1000g (1)	If the percentage of non nickel compounds is calculated to give 85.8%/86% score 2	(3)
	$\frac{142}{1000}$ (1) x 100% =14(.2) (1)	<u>142</u> or 0.142 will score MP1 and MP2 1000	
		$\frac{142}{1}$ x 100 = 14200 scores (1)	
Question	Answer	Additional guidance	Mark

Question number	Answer	Additional guidance	Mark
(ii)	decontaminates ground / conserves {nickel / nickel ores / ores} / allows use of low-grade ore / specified environmental reason: e.g. less noise due to mining / carbon neutral / less carbon dioxide	Ignore any reference to cost/ better for environment etc. / time / energy	(1) XP

Q5.

Question number	Answer	Additional guidance	Mark
	Any two from: • {(red-)brown / orange / pink} solid formed (1)	Ignore substance names – descriptions are required	(2)
	 (some) {grey/silver} solid remains (1) (blue solution) becomes colourless (1) 	allow {grey/silver} solid disappears / reduces / dissolves	
	8287-943	Answers that include fizzing/ effervescence/ bubbles in addition to correct response have max score of 1.	

Q6.

Question number	Answer	Additional guidance	Mark
Any two from: • {(red-)brown /	Any two from: • {(red-)brown / orange / pink} solid formed (1)	ignore substance names – descriptions are required	(2)
	 (some) {grey/silver} solid remains (1) 	allow {grey/silver} solid disappears / reduces / dissolves	
	 (blue solution) becomes colourless (1) 	Answers that include fizzing/ effervescence/ bubbles in addition to correct response have max score of 1.	

Q7.

Question number	Answer	Additional guidance	Mark
	 An explanation linking zinc oxidised (1) because (zinc) lose electrons/ half equation (1) copper (ions) reduced (1) because copper (ions) gained electrons/ half equation (1) 	ignore copper sulfate is reduced ignore copper sulfate gains electrons marks are independent e.g zinc is reduced because it loses electrons = 1 zinc is oxidised because it gains electrons = 1 If no other mark scored allow one mark for oxidation is the loss of electrons and reduction is the gain of electrons	(4)

Q8.

Question number	Answer	Additional guidance	Mark
number	 An explanation linking zinc oxidised (1) because (zinc) lose electrons/ half equation (1) copper (ions) reduced (1) because copper (ions) gained electrons/ half equation (1) 	ignore copper sulfate is reduced ignore copper sulfate gains electrons marks are independent e.g zinc is reduced because it loses electrons = 1 zinc is oxidised because it gains electrons = 1 If no other mark scored allow one mark	(4)
		for oxidation is the loss of electrons and reduction is the gain of electrons	

Q9.

Question Number	Answer	Additional guidance	Mark
	An explanation linking the following points		(2)
	 aluminium is high in reactivity / aluminium oxide is (very) stable (1) 	allow carbon is less reactive than aluminium / ORA / aluminium is very reactive ignore `aluminium is more reactive' (alone)	AO 1 1
	 aluminium (oxide) cannot be reduced by carbon (1) 	allow carbon cannot displace aluminium / aluminium oxide does not react with carbon ignore aluminium extracted by electrolysis	

Q10.

Question Number	Answer	Additional guidance	Mark
	An explanation linking the following points		(2)
	 aluminium is high in reactivity / aluminium oxide is (very) stable (1) 	allow carbon is less reactive than aluminium / ORA / aluminium is very reactive ignore `aluminium is more reactive' (alone)	AO 1 1
	 aluminium (oxide) cannot be reduced by carbon (1) 	allow carbon cannot displace aluminium / aluminium oxide does not react with carbon ignore aluminium extracted by electrolysis	

Q11.

Question Number	Answer	Mark
(i)	C iron oxide is reduced	(1)
	The only correct answer is C	AO 1 1
	A is not correct because carbon gains oxygen	
	B is not correct because it is not an acid-base reaction	
	D is not correct because iron oxide loses oxygen	

Question Number	Answer	Additional guidance	Mark
(ii)	final answer of 168 (tonnes) with or without working (3) OR relative formula mass $Fe_2O_3 =$ 2x56 + 3x16 (= 160) (1) 160 tonnes Fe_2O_3 produces {2x56 / 112} tonnes $Fe (1)$ 240 tonnes Fe_2O_3 produces $2x56 \times 240 (1) = 168$ (tonnes) 160	allow ECF throughout M _r [Fe ₂ O ₃]= 160 seen without working (1) allow 320 tonnes : 224 tonnes (1) final answer 84 (tonnes) with or without working (2)	(3) AO 2 1
	OR relative formula mass Fe_2O_3 = 2x56 + 3x16 (= 160) (1) $\frac{240}{1} = 1.5$ 160 1.5 x 112 (1) = 168 (tonnes) OR relative formula mass Fe_2O_3 = 2x56 + 3x16 (= 160) (1) $\frac{112}{160} = 0.7$ 160 0.7 x 240 (1) = 168 (tonnes)	Note : final answer 1.5 scores 2 overall	

Q12.

Question Number	Answer	Mark
(i)	C iron oxide is reduced	(1)
	The only correct answer is C	AO 1 1
	A is not correct because carbon gains oxygen	
	B is not correct because it is not an acid-base reaction	
	D is not correct because iron oxide loses oxygen	

Question Number	Answer	Additional guidance	Mark
(ii)	final answer of 168 (tonnes) with or without working (3) OR relative formula mass $Fe_2O_3 =$ 2x56 + 3x16 (= 160) (1) 160 tonnes Fe_2O_3 produces {2x56 / 112} tonnes $Fe (1)$ 240 tonnes Fe_2O_3 produces $2x56 \times 240 (1) = 168$ (tonnes) 160	allow ECF throughout M _r [Fe ₂ O ₃]= 160 seen without working (1) allow 320 tonnes : 224 tonnes (1) final answer 84 (tonnes) with or without working (2)	(3) AO 2 1
	OR relative formula mass Fe_2O_3 = 2x56 + 3x16 (= 160) (1) $\frac{240}{10} = 1.5$ 160 1.5 x 112 (1) = 168 (tonnes) OR relative formula mass Fe_2O_3 = 2x56 + 3x16 (= 160) (1) $\frac{112}{160} = 0.7$ 160 0.7 x 240 (1) = 168 (tonnes)	Note : final answer 1.5 scores 2 overall	

Q13.

Question Number	Answer	Acceptable answers	Mark
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		(3)
	lhs (1) rhs (1) balancing correct formulae (1)		

Q14.

Question Number	Answer	Acceptable answers	Mark
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		(3)
	lhs (1) rhs (1) balancing correct formulae (1)		

Q15.

Question Number	Answer	Acceptable answers	Mark
(a)	loss of oxygen	gain of electrons	(1)
Question Number	Answer	Acceptable answers	Mark
(b)	 An explanation to include aluminium high in reactivity series / aluminium more reactive than {carbon / iron} (1) (aluminium reduction) needs more energy / electrolysis is {more / very} powerful (means of reduction) / carbon cannot displace aluminium (from aluminium oxide) (1) 	aluminium compounds are stable aluminium is more reactive ignore just 'very reactive'/highly reactive allow stronger (method of reduction)	(2)

Q16.

Question Number	Answer	Acceptable answers	Mark
(a)	loss of oxygen	gain of electrons	(1)

Question Number	Answer	Acceptable answers	Mark
(b)	 An explanation to include aluminium high in reactivity series / aluminium more reactive than {carbon / iron} (1) (aluminium reduction) needs more energy / electrolysis is {more / very} powerful (means of reduction) / carbon cannot displace aluminium (from aluminium oxide) (1) 	aluminium compounds are stable aluminium is more reactive ignore just 'very reactive'/highly reactive allow stronger (method of reduction)	(2)

Q17.

Question Number	Answer	Additional guidance	Mark
	An explanation linking		(2)
	 zinc corrodes {easier than / in preference to / OWTTE} iron / zinc reacts with air and water instead (1) 	reject zinc rusts	AO 1 1 AO 2 1
	 zinc is more reactive than iron / zinc is sacrificial / zinc has a higher tendency to form ions (1) 		

Q18.

Question number	Answer	Mark
(i)	electrolysis (1)	(1)

Question number	Answer	Mark
(ii)	 An answer that combines identification- knowledge (1 mark) and understanding (1 mark) and reasoning/justification-understanding (1 mark) aluminium compounds are more stable than iron compounds (1) so carbon is not a strong enough reducing agent to produce aluminium from its ore (1) 	(2)

Q19.

Question number	Answer	Additional guidance	Mark
(i)	D oxidation Answers A and B are physical processes rather than chemical reactions.		(1)
	C is wrong because it is not neutralisation.		
Question	Ancwor	Additional quidance	Mark

Question number	Answer	Additional guidance	Mark
(ii)	 A description linking any three from: Iift lid from time to time/ leave small gap between crucible and lid (1) find mass (of crucible, lid and product) (1) {repeat / heat} to constant mass (1) 	allow `weigh'	(3)
	 final mass – start mass = mass of oxygen (1) 	allow find the change in mass	

Q20.

Question number	Answer	Additional guidance	Mark
(i)	D oxidation Answers A and B are physical processes rather than chemical reactions.		(1)
-	C is wrong because it is not neutralisation.		

Question number	Answer	Additional guidance	Mark
(ii)	 A description linking any three from: lift lid from time to time/ leave small gap between crucible and lid (1) find mass (of crucible, lid and product) (1) {repeat / heat} to constant mass (1) 	allow `weigh'	(3)
	 final mass – start mass = mass of oxygen (1) 	allow find the change in mass	

Q21.

Question Number	Answer	Mark
	electrolysis	(1) AO 3 2a

Q22.

Question Number	Answer	Mark
	electrolysis	(1) AO 3
		2a

Q23.

Question Number	Answer	Additional guidance	Mark
	A description to include		(2)
	 plants absorb {copper/metal} (ions) from the {soil/ores} / plants concentrate copper ions (1) plants (harvested and) burned (to leave copper/metal compound) (1) 	ignore plants absorb copper from solid metal ignore copper {atoms/metal/compounds} ignore plants heated mark independently	AO 1 1

Q24.

Question Number	Answer	Additional guidance	Mark
	A description to include		(2)
	 plants absorb {copper/metal} (ions) from the {soil/ores} / plants concentrate copper ions (1) plants (harvested and) burned (to leave copper/metal compound) (1) 	ignore plants absorb copper from solid metal ignore copper {atoms/metal/compounds} ignore plants heated mark independently	AO 1 1

Q25.

Question Number	Answer	Additional guidance	Mark
(i)	P R Q S (2)	two in correct order (1)	(2) AO 3 2a AO 3 2b

Question Number	Answer		Mark
(ii)	A workable diagram showing a method to measure the volume of	if diagram is not workable (eg	(2)
	the gas	no bung at top of test tube), max 1 mark	AO 3 3a AO 3 3b
	 delivery tube between test- tube and (1) 	allow connection shown as	
	 gas syringe / (graduated tube / inverted burette / measuring cylinder) over water bath (1) 	if collection vessel not labelled, graduations must be shown for the second mark	

Q26.

Question Number	Answer	Additional guidance	Mark
(i)	P R Q S (2)	two in correct order (1)	(2) AO 3 2a AO 3 2b
Question Number	Answer		Mark
(ii)	A workable diagram showing a method to measure the volume of the gas	if diagram is not workable (eg no bung at top of test tube), max 1 mark	(2) AO 3 3a AO 3 3b
	 delivery tube between test- tube and (1) 	allow connection shown as	

 gas syringe / (graduated tube / inverted burette / measuring cylinder) over water bath (1)
 if collection vessel not labelled, graduations must be shown for the second mark

Q27.

Question number	Answer	Additional guidance	Mark
(i)	both form a hydroxide	allow formulae ignore observations	(1)
Question number	Answer	Additional guidance	Mark
(ii)	potassium {forms cations / loses (outer) electron} more easily ORA	ignore speed of electron loss / sizes of atoms / number of shells / distance of electrons from nucleus / number of electrons in outer shell	(1)

Q28.

Question number	Answer	Additional guidance	Mark
(i)	both form a hydroxide	allow formulae ignore observations	(1)
Question number	Answer	Additional guidance	Mark
(ii)	potassium {forms cations / loses (outer) electron} more easily ORA	ignore speed of electron loss / sizes of atoms / number of shells / distance of electrons from nucleus / number of electrons in outer shell	(1)

Q29.

Question number	Answer	Additional guidance	Mark
(i)	$2\text{NiS} + 3\text{O}_2 \rightarrow 2\text{NiO} + 2\text{SO}_2 (2)$	allow = for \rightarrow allow multiples	(2)
	all four formulae (1)		
	balancing correct formulae only	if wrong subscript or misuse of capital/small	
	(1)	letter e.g. O2, O ² , niO, NIS, allow MP1 but cannot score MP2	
		if more than 4 formulae, can score MP1 but not	
		MP2	
		ignore state symbols	

Question number	Answer	Mark
(ii)	 B the metal produced by electrolysis is very pure is the only correct answer A is incorrect because this is a disadvantage 	(1)
	C is incorrect because electrolysis is expensive	
	D is incorrect because heating with carbon can be used	

Q30.

Question number	Answer	Additional guidance	Mark
(i)	$2NiS + 3O_2 \rightarrow 2NiO + 2SO_2$ (2) all four formulae (1)	allow = for \rightarrow allow multiples	(2)
	balancing correct formulae only (1)	if wrong subscript or misuse of capital/small letter e.g. O2, O ² , niO, NIS, allow MP1 but cannot score MP2 if more than 4 formulae, can score MP1 but not MP2 ignore state symbols	

Question number	Answer	Mark
(ii)	 B the metal produced by electrolysis is very pure is the only correct answer A is incorrect because this is a disadvantage C is incorrect because electrolysis is expensive D is incorrect because heating with carbon can be used 	(1)

Name: _____

Chemistry Paper 1 Low Tariff Topics

Date:

Time:

Total marks available:

Total marks achieved: _____

Mark Scheme

Q1.

Answer	Additional guidance	Mark
$2AI + 6H^+ \rightarrow 2AI^{3+} + 3H_2$ (2)	Al and H_2 (1) balancing of correct species (1)	(2)
	allow multiples	AO 2 1
		$2AI + 6H^{+} \rightarrow 2AI^{3+} + AI and H_{2} (1)$ $3H_{2} (2) balancing of correct species (1)$

Q2.

Question number	Answer	Additional guidance	Mark
(i)	 An explanation linking stainless steel resistant to {corrosion/ rusting/ oxidation} / corrosion rate slower / does not react with {air/oxygen} and water neither rod would rust/ react (in a few days) / there would be no {rusting / reaction}/ no change would occur / it would take a long time for any result (1) 	Ignore iron corrodes but ALLOW iron corrodes faster than stainless steel / iron rusts but stainless steel does not (1)	(2)
(ii)	measuring cylinder accurate enough / accuracy of pipette not needed / no need to be (more) accurate / the volume of water is not critical	allow exact/ precise for accurate allow pipettes only used for accurate/ precise/ exact volumes	(1)
(iii)	 An explanation linking (A) the magnesium has {corroded/ reacted/ oxidised} / (B) {rusting / corrosion / oxidation} has occurred (1) because magnesium is more reactive than iron / (magnesium has reacted) instead of the iron (1) 	MP1 describes reaction that occurs MP2 reason – ignore 'sacrificial protection' etc.	(2)

(3)

Q3.

Question Number	Answer	Additional guidance	Mark
(i)	C neutral (1)		(1)
Question Number	Answer		Mark
(ii)			(2)
Question Number	Answer		Mark
(iii)	CaCO ₃ + 2HNO ₃ → Ca(NO ₃) ₂ left hand side formulae (1) right hand side formulae (1 balancing correct formulae)	(2)

Q4.

Question number	Answer	Additional guidance	Mark
	mol of acid = $24.80 \div 1000 \times 0.200$ (= 0.004 96 mol) (1)	Award full marks for correct numerical answer without working.	
	mol NaOH = 2×0.00496 (= 0.00992) (1)	Allow max 3 marks if missing '2 ×' in step 2.	
	conc. of NaOH = 0.009 92 \div 25.0 \times 1000 (1)		
	$= 0.3968/0.397 \text{ (mol dm}^{-3}) (1)$		
	or		
	$(25.00 \times \text{conc NaOH}) \div 2 = 24.80 \times 0.200$ (2)		
	conc NaOH = 2 \times 24.80 \times 0.200 \div 25.00 (1)		
	= 0.3968/0.397 (mol dm ⁻³) (1)		(4)

Q5.

Question number	Answer	Additional guidance	Mark
	proportion gold = $9 \div 24$ (= 0.375) (1)	Award full marks for correct numerical answer without working.	
	mass = $0.375 \times 12 = 4.5$ (g) (1)	3	(2)

Q6.

Question Number	Answer	Mark
(i)	$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	(2) AO 3 1a AO 3 1b

Question Number	Answer	Additional guidance	Mark
(ii)	all <u>atoms</u> in the reactants are present in the product / only one product is formed	allow no atoms are wasted (in the reaction) / no waste products / nothing is wasted	(1) AO 1 1
		allow total mass of reactants = mass of useful products	
		allow complete calculation to show that atom economy is 100%	
		ignore equation is balanced / same number of atoms on both sides	

Q7.

Question number	Answer	Additional guidance	Mark
(i)	Left : H ₂ SO ₄ (1)	reject superscript numbers	(2)
	Right : CuSO4 (1)	reject superscript numbers	
		incorrect balancing max 1	

Question number	Answer	Mark
(ii)	63.5 + 12 + 3x16 (1)	(2)
	= 123.5 (1)	

Question number	Answer	Mark
(iii)	A bubble the gas through limewater, limewater turns cloudy The only correct answer is A	(1)
	 B is not correct because test shows only an acidic gas C is not correct because test shows only that the gas does not support combustion D is not correct because test shows only an acidic gas 	

Q8.

Question number	Answer	Additional guidance	Mark
	<pre>charge on ion _ + 2 charge on ion2 (3) • correct dots for calcium ion (1) • correct 2 dots and 6 crosses for the oxide ion (1) • correct charges 2+/+2 and 2-/-2 (1)</pre>	ignore arrows showing movement of electrons	(3) EXP

Q9.

Question number	Answer	Mark
	D the metal is oxidised	(1)
	A is incorrect because the reaction is with oxygen	
	B is incorrect because the reaction is with oxygen	
	C is incorrect because the metal does not decompose	

Q10.

Question number	Indicative content	Additional guidance	Mark
	An answer that provides a description by making reference to:		(2)
	shared electrons (1)	allow one electron from each	
	 {a pair of / two} (electrons) (1) 	allow more than one shared pair any idea of ionic bonding / ions = 0	

Q11.

Question number	Answer	Additional guidance	Mark
	2.24 = 0.04 and $0.96 = 0.06(1)56.0 16.0$	allow ECF for MP2 and MP3 only.	(4)
	1:1.5/2:3 (1)		
	Fe ₂ O ₃ (1)		
	4Fe + 3O ₂ → 2 Fe₂O₃ (1)	allow $\frac{2.24}{56.0} = 0.04$ and $\frac{0.96}{32.0} = 0.03$ (1) 1.22 + 1.(4 + 2.(1))	
		1.33 : 1 / 4 : 3 (1) Fe ₂ O ₃ (1)	
		4Fe + $3O_2 \rightarrow 2Fe_2O_3$ (1)	
		NOTE: equation alone gains no marks.	

Q12.

Question number	Answer	Additional guidance	Mark
	final answer of 14 with or without working (3)	allow ECF	(3)
	OR		
	$\frac{2.9}{5.0} = 0.58$ (1)		
	0.58 x 100 = 58% (1)		
	14 (1)	allow 13.8-14.0	

Q13.

Question number	Answer	Additional guidance	Mark
(i)	both are {soluble/will dissolve} (in water)		(1)
Question number	Answer	Additional guidance	Mark
(ii)	$NH_3 + HNO_3 \rightarrow NH_4NO_3$ LHS (1) RHS (1)	allow multiples	(2)

Question number	Answer		Mark
(iii)	a similarity from :		(2)
	both use sulfuric acid (1)	ignore both produce ammonium sulfate	
		allow both use same reactants	
	both (are examples of) neutralisation (1)	allow both give out heat energy / exothermic (1)	
	and a difference from :		
	the industrial process is on a much larger scale than the laboratory process / ORA (1)	allow laboratory preparation is a batch process, industrial preparation is continuous process (1)	
	the industrial process involves more stages than the laboratory process / ORA (1)		
	ammonia is a gas in the industrial process but a solution in the laboratory process (1)		
	laboratory preparation uses titration and crystallisation (1)	ignore industrial is more dangerous	

Q14.

Question number	Answer	Mark
(i)	B H S S H	(1)
Question number	Answer	Mark
(ii)	C low low poor conductor	(1)

Q15.

Question Number	Answer	Additional guidance	Mark
		double bond (1) rest of molecule (1)	(2)
		(dependent on correct double bond) ignore atomic symbol	AO 1 1
	(2)	allow all x or ● ignore inner shells of electrons even if incorrect	

Q16.

Question number	Answer	Additional guidance	Mark
number	(2) (2) or • CO ₂ with one correct double bond (1) • rest of structure correct (1)	ignore any inner electrons shown remaining electrons on oxygen either singly or paired allow all dots or all	(2)
		crosses 2 nd mark dependent on 1st	

Q17.

Question number	Answer	Additional guidance	Mark
(i)	 {2 pairs of/four} electrons shared between an oxygen atom and the carbon atom (1) rest of structure correct (1) 	ignore any inner electrons shown remaining electrons on oxygen either singly or paired allow all dots or all crosses 2 nd mark dependent on 1st	(2) EXP
Question number	Answer	Additional guidance	Mark
(ii)	 An explanation that makes reference to identification – knowledge (1 mark) and reasoning /justification – knowledge (1 mark): diamond has a giant (covalent) structure / strong (covalent) bonds / each carbon atom is bonded to four other carbon atoms / all carbon atoms in diamond are bonded together (1) large amount of (heat) energy is needed to {separate the carbon 	reject ionic lattice reject layers reject bonds between molecules reject intermolecular forces being broken	(2) GRAD
	atoms / break the bonds / break up lattice} (1)	ignore just high heat mark independently	

Q18.

Question Number	Answer	Acceptable answers	Mark
(a)	Cl ⁻ and OH ⁻	Reject if any other ions given Allow names / chloride and hydroxide	(1)
Question Number	Answer	Acceptable answers	Mark
(b)	D lead and bromine		(1)

Question Number	Answer	Acceptable answers	Mark
(c)	A explanation to include: oxidation is the loss of electrons (1) reduction is the gain of electrons (1)	oxidation is the gain of electrons AND reduction is the loss of electrons (1)	(2)
Question Number	Answer	Acceptable answers	Mark
(d)	A explanation to include any two from: to put a layer of one metal onto another metal (1) change / improve the appearance (of metal objects) (1)	allow to give shiny appearance / look nicer	(2)
	improve the resistance to corrosion (of metal objects) (1) qualified reference to cost eg thin layer of expensive metal on cheaper metal (1)	allow prevents corrosion ignore rusting unless linked to iron/steel	

Q19.

Question Number	Answer	Acceptable answers	Mark
(i)	A description including two of the following • dissolve the sugar/aqueous solution (1)	ignore incorrect answers	(2)
	 warm/ 25-40°C (1) 	ignore heat / hot allow any temperature or range within 25-40 allowed	
	 in absence of air / no oxygen/ anaerobic / attach airlock (1) pH neutral / slightly acidic /4-7 		
	 sterile conditions ignore any mention of pressure 	ignore clean etc ignore `optimum' {temp/pressure/pH}	

Question Number	Answer	Acceptable answers	Mark
(ii)	B fractional distillation		(1)

Question Number	Answer	Acceptable answers	Mark
(iii)	$\begin{array}{rcl} C_6H_{12}O_6 & \rightarrow & 2 \ C_2H_5OH + 2 \ CO_2 \\ (2) \end{array}$	allow C ₂ H ₆ O/ CH ₃ CH ₂ OH for C ₂ H ₅ OH reject CO2 / CO ²	(2)
	correct formulae (<u>with no others</u>) (1) balancing <u>the three</u> formulae (1) ignore state symbols	allow multiples	

Q20.

Question number	Answer	Mark
	 An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): aluminium and copper have different size atoms (1) and so this prevents the layers of metal atoms from sliding over one another (1) 	(2)

Q21.

Question number	Answer	Additional guidance	Mark
	An explanation linking	reject molecules once	(2)
	 (18 carat gold) contains atoms of different sizes/ORA (1) 	allow particles/ions for atoms	
	 disrupts structure of metal / prevents layers from {slipping / sliding /moving} over one another (1) 	allow particles / atoms / sheets / rows for layers	

Q22.

Question Number	Answer	Acceptable answers	Mark
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		(3)
	lhs (1) rhs (1) balancing correct formulae (1)		

Q23.

Question Number	Answer	Additional guidance	Mark
	$\begin{array}{l} 2H^+ + 2e^{(-)} \rightarrow H_2 /\\ 2H^+ \rightarrow H_2 - 2e^{(-)} \end{array} (2) \end{array}$	allow use of = or \rightleftharpoons in place of \rightarrow allow multiples	(2)
	species in correct place as shown above (1) balancing of correct species in correct place (1)	reject h2 / h ₂ / H2 / H ²	AO 1 1

Q24.

Question Number	Answer	Mark
	 Ca²⁺ (1) NO₃ (1) 	
		(2)

Q25.

Question Number	Answer	Additional guidance	Mark
	An explanation linking		(2)
	 zinc corrodes {easier than / in preference to / OWTTE} iron / zinc reacts with air and water instead (1) 	reject zinc rusts	AO 1 1 AO 2 1
	 zinc is more reactive than iron / zinc is sacrificial / zinc has a higher tendency to form ions (1) 		

Q26.

Question number	Answer	Mark
	reactants are being used up (1)	(1)

Q27.

Question number	Answer	Additional guidance	Mark
(i)	any two from E, G and X	allow mark if all three given for E allow B / boron for G allow O / O ₂ / oxygen for X allow Ar / argon allow use of lower case letters reject answers with any other letters / element names	(1)
(ii)	any two from A , E and G	allow mark if all three given for A allow Li / lithium for E allow B / boron for G allow O / O ₂ / oxygen allow use of lower case letters reject answers with any other letters / element names	(1)
(iii)	A / J	allow mark if both given for A allow Li / lithium for J allow Na / sodium allow use of lower case letters reject answers with any other letters / element names reject answers with + or – charges	(1)

Q28.

Question Number	Answer	Mark
	 An explanation that combines identification - knowledge (1 mark) and reasoning/justification - understanding (1 mark): magnesium more reactive (than iron in steel) (1) magnesium has a greater tendency to form ions/reacts 	
	instead of the iron (1)	(2)

Q29.

Question number	Answer	Mark
(i)	С	(1)

Question number	Answer	Mark
(ii)	C	(1)

Q30.

Question number	Answer	Mark
	D SO42-	(1) comp

Q31.

Question number	Answer	Mark
	D 12 protons, 12 neutrons, 10 electrons	(1) comp

Q32.

Question Number	Answer	Acceptable answers	Mark
(i)	 A description linking blue (1) precipitate / solid (1) Marked independently. If further, incorrect observations given, use list principle 	allow appropriate qualifiers: e.g. 'light blue' but not other colours eg green-blue allow ppt	(2)

Question Number	Answer	Acceptable answers	Mark
(ii)	$Cu^{2+} + 2OH^- \rightarrow Cu(OH)_2$ (3) Identifies Cu^{2+} on LHS <u>and</u> $Cu(OH)_2$ on RHS in equation format (1) OH ⁻ formula on LHS (1) These two marks are independent and can be scored even if additional ions, correct or incorrect, are given balancing correct symbols (1) This mark is only awarded for a fully correct ionic equation with no additional ions	allow multiples accept Cu ²⁺ (OH ⁻) ₂ allow Cu ⁺⁺ / Cu ⁺² reject incorrect symbols such as cu ²⁺ , Oh ⁻ etc. ignore: state symbols allow = instead of \rightarrow	(3)

Q33.

Question Number	Answer	Mark
	C oxidised	(1)

Q34.

Question Number	Answer	Mark
	C yes high coloured	(1)
	The only correct answer is C	AO 1 1
	A is not correct because transition metal chlorides are coloured	
	B is not correct because all properties are incorrect	
	D is not correct because transition metals are used as catalysts and have a high density	

Q35.

Question number	Answer	Additional guidance	Mark
	 Any two from: improves the appearance/ shiny (1) improves resistance to corrosion/ does not corrode/ prevents reaction with {air/oxygen/water}/ prevents oxidation (1) 	allow does not rust ignore durable/ protects unqualified etc.	(2)
	 can make e.g. 'gold' object more cheaply using a gold layer on a cheaper base / looks more expensive than it is (1) 	ignore 'makes more valuable'	

Q36.

Question Number	Answer	Mark
(i)	B -78 -33 does not conduct	(1)
	The only correct answer is B	AO 2 1
	A is not correct because simple molecular, covalent substances do not have high mpt and bpt	
	<i>C</i> is not correct because ammonia is a gas at room temperature and does not conduct	
	D is not correct because simple molecular, covalent substances do not have these properties	

Question Number	Answer	Additional guidance	Mark
(ii)	$N_2 + 3H_2 \rightarrow 2NH_3 (2)$	accept multiples allow = or \rightleftharpoons in place of \rightarrow	(2)
	left hand side formulae (1) balancing of correct formulae (1)	ignore state symbols even if incorrect do not allow N2, n2, etc	AO 2 1

Q37.

Question number	Answer	Additional guidance	Mark
(i)	iron rusts/ corrodes/ reacts {with oxygen/ water} / iron oxidises / forms iron oxide	ignore erodes/ corrosive	(1)

Question number	Answer	Additional guidance	Mark
(ii)	platinum is a transition { <u>metal/</u> element}	ignore 'in the middle' etc. ignore any irrelevant/ additional information	(1)

Question Number	Answer	Additional guidance	Mark
(i)	A description including		(2)
	 apply lighted splint (1) 	allow flame / ignite gas / fire	AO 2 2
	 (squeaky) pop (1) 	ignore `squeaky pop test' / glowing splint	
		second mark is dependent on first	

Question Number	Answer		Mark
(ii)	An explanation linking		(2)
	 loss of electron(s) (1) 	allow gains two electrons for 1 mark	AO 1 1
	 two electrons (1) 	zero marks overall if sharing of electrons / gain or loss of protons / positive electrons	
		marks can be awarded for suitably drawn diagram / half equation	

Q39.

Question number	Answer	Additional guidance	Mark
	 An explanation linking {less oxygen / no oxygen / oxygen is removed} by the hydrazine (1) 	For MP1 allow 'oxygen reacts with hydrazine instead of the metal' (1)	(2)
	 oxygen is needed for {rusting / reaction} / corrosion/so oxidation prevented (1) 	ignore hydrazine {displaces/ more reactive than} oxygen no oxygen so no rusting scores 2	

Q40.

Question Number	Answer	Mark
An explanation that combines identification - application of knowledge (2 marks) and reasoning/justification - application of understanding (2 marks)		
	 hydrochloric acid is (almost) fully dissociated into ions (1) ethanoic acid is only slightly dissociated into ions (1) but the concentration of acid in the hydrochloric acid is lower (1) so the concentration of hydrogen ions in the hydrochloric 	
	acid is lower (1)	(4)

Q41.

Question number	Answer	Additional guidance	Mark
	$2H_2 + O_2 \rightarrow 2H_2O$ (2) fully correct balanced equation (2) If not (2), then H ₂ O as product in an equation format, regardless of any other errors (1)	$\begin{array}{l} \mbox{Allow}=, \rightleftharpoons \mbox{for} \to \\ \mbox{Ignore all words and state symbols} \\ \mbox{Allow multiples} \\ \mbox{reject formulae with charges} \\ \mbox{Do not penalise small letters e.g allow } h_2O \\ \mbox{If H2O or H}^2O \mbox{ in otherwise fully correct} \\ \mbox{equation, allow (1)} \end{array}$	(2)

Q42.

Question Number	Answer	Mark
	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark)	
	 high density (1) (so that) Bunsen does not tip over (1) 	

Q43.

Question number	Answer	Additional guidance	Mark
(i)	$2\text{NiS} + 3\text{O}_2 \rightarrow 2\text{NiO} + 2\text{SO}_2 (2)$	allow = for \rightarrow allow multiples	(2)
	all four formulae (1)		
	balancing correct formulae only	if wrong subscript or misuse of capital/small	
	(1)	letter e.g. O2, O ² , niO, NIS, allow MP1 but cannot score MP2	
		if more than 4 formulae, can score MP1 but not MP2	
		ignore state symbols	

Question number	Answer	Mark
(ii)	B the metal produced by electrolysis is very pure is the only correct answerA is incorrect because this is a disadvantage	(1)
	C is incorrect because electrolysis is expensive	
	D is incorrect because heating with carbon can be used	

Q44.

Question number	Answer	Additional guidance	Mark
	Na2SO4	allow SO4Na2 allow upper case A ignore any charges on ions reject non-subscript 2 & 4	(1)

Q45.

Question number	Answer	Additional guidance	Mark
3 3	$Cu^{2+} + 2 OH^{-} \rightarrow Cu(OH)_2$ (2)	allow reactants in any order	(2)
	OH ⁻ / Cu(OH) ₂ (1) balancing of correct formulae (1)	ignore state symbols	GRAD

Q46.

Question number	Answer	Additional guidance	Mark
	MgO + $2H^+ \rightarrow Mg^{2+} + H_2O$ LHS (1) RHS (1) balancing of correct formulae (1)	allow two marks for O ²⁻ + 2H ⁺ → H2O	(3)